Show simple item record

dc.contributor.authorDokuchaev, Nikolai
dc.date.accessioned2017-01-30T13:06:05Z
dc.date.available2017-01-30T13:06:05Z
dc.date.created2011-11-18T01:21:24Z
dc.date.issued2011
dc.identifier.citationDokuchaev, Nikolai. 2007. Mean-reverting market model: speculative opportunities and non-arbitrage. Applied Mathematical Finance. 14 (4): pp. 319-337.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/28616
dc.identifier.doi10.1080/13504860701255078
dc.description.abstract

The paper studies arbitrage opportunities and possible speculative opportunities for diffusion mean-reverting market models. It is shown that the Novikov condition is satisfied for any time interval and for any set of parameters. It is non-trivial because the appreciation rate has Gaussian distribution converging to a stationary limit. It follows that the mean-reverting model is arbitrage-free for any finite time interval. Further, it is shown that this model still allows some speculative opportunities: a gain for a wide enough set of expected utilities can be achieved for a strategy that does not require any hypothesis on market parameters and does not use estimation of these parameters.

dc.publisherChapman & Hall (Taylor & Francis)
dc.subjectmean-reverting model
dc.subjecttechnical analysis
dc.subjectuniversal portfolio
dc.subjectself-financing strategies
dc.subjectarbitrage
dc.subjectdiffusion market
dc.titleMean-reverting market model: speculative opportunities and non-arbitrage
dc.typeJournal Article
dcterms.source.volume14
dcterms.source.startPage319
dcterms.source.endPage337
dcterms.source.issn1350-486X
dcterms.source.titleApplied Mathematical Finance
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record