Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Zircon Lu-Hf isotopes and granite geochemistry of the Murchison Domain of the Yilgarn Craton: Evidence for reworking of Eoarchean crust during Meso-Neoarchean plume-driven magmatism

    Access Status
    Fulltext not available
    Authors
    Ivanic, T.
    Van Kranendonk, M.
    Kirkland, Chris
    Wyche, S.
    Wingate, M.
    Belousova, E.
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Ivanic, T. and Van Kranendonk, M. and Kirkland, C. and Wyche, S. and Wingate, M. and Belousova, E. 2012. Zircon Lu-Hf isotopes and granite geochemistry of the Murchison Domain of the Yilgarn Craton: Evidence for reworking of Eoarchean crust during Meso-Neoarchean plume-driven magmatism. Lithos. 148: pp. 112-127.
    Source Title
    Lithos
    DOI
    10.1016/j.lithos.2012.06.006
    ISSN
    0024-4937
    School
    Department of Applied Geology
    URI
    http://hdl.handle.net/20.500.11937/28722
    Collection
    • Curtin Research Publications
    Abstract

    New in situ Lu–Hf data on zircons from GSWA geochronology samples has provided a unique isotopic dataset with a high temporal resolution for the Murchison Domain of the Yilgarn Craton in Western Australia. These data identify extended periods of juvenile mantle input (positive εHf values) into the crust firstly at c. 2980 Ma and then from c. 2820 Ma to c. 2640 Ma with significant pulses of crustal recycling at c. 2750 Ma and c. 2620 Ma (highly negative εHf values). Geochemical data from well-characterised granitic suites of the Murchison Domain provide additional constraints on the crustal evolution of the area and indicate a prolonged period of crustal melting and remelting at progressively shallower depths from c. 2750 to c. 2600 Ma. At c. 2760–2753 Ma, widespread calc-alkaline, intermediate to silicic volcanic rocks of the Polelle Group were erupted, accompanied by intrusion of felsic to intermediate melts derived from a variety of crustal sources that likely formed by partial mixing with basaltic melts. The intrusive rocks include a wide geochemical array of rocks in the Cullculli and Eelya suites that were sourced over a wide range of crustal depths. At this time a major departure to negative εHf values (<−5) occurred, indicating sampling of c. 3.80 Ga model aged source rocks as well as continued juvenile input. Post-volcanic granitic rocks emplaced between c. 2710 and c. 2600 Ma show geochemical evidence for progressive fractionation through time and derivation from an evolving crustal source.We interpret the driving force for this protracted history of mantle and crustal melting to be two mantle plumes at 2.81 and 2.72 Ga. These data document the process of cratonization through progressive melt depletion of the lower crust, progressively fractionating and shallower melts, culminating with a final phase of crustal recycling (εHf < − 5) and the cessation of juvenile input at c. 2630–2600 Ma during intrusion of the Bald Rock Supersuite, resulting in cratonization of this part of the Yilgarn Craton.

    Related items

    Showing items related by title, author, creator and subject.

    • Isotopic insight into the Proterozoic crustal evolution of the Rudall Province, Western Australia
      Gardiner, Nicholas; Maidment, D.; Kirkland, Chris; Bodorkos, S.; Smithies, R.; Jeon, H. (2018)
      © 2018 The Authors The Proterozoic assembly of Australia involved the convergence of three main Archean cratonic entities: the North, West and South Australian Cratons, and is recorded in the Proterozoic orogenic belts ...
    • Petrogenesis of Late Triassic intrusive rocks in the northern Liaodong Peninsula related to decratonization of the North China Craton: Zircon U–Pb age and Hf–O isotope evidence
      Yang, J.; Sun, J.; Zhang, J.; Wilde, Simon (2012)
      Major and trace element, whole rock Sr‐, Nd‐and Hf‐isotopes and zircon U–Pb age and Hf–O isotope data have been determined for mafic to felsic intrusive rocks from the Late Triassic Mayihe (MYH), Longtou–Chaxinzi–Xiaoweishahe ...
    • The Proterozoic geological history of the Irumide belt, Zambia
      De Waele, Bert (2004)
      The Irumide belt is an elongate crustal province characterised by Mesoproterozoic tectonism and magmatism that stretches over a distance of approximately 900 kilometers from central Zambia to the Zambia-Tanzania border ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.