Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Heterostructured electrode with concentration gradient shell for highly efficient oxygen reduction at low temperature

    232985_232985.pdf (1.271Mb)
    Access Status
    Open access
    Authors
    Zhou, W.
    Liang, F.
    Shao, Zongping
    Chen, J.
    Zhu, Z.
    Date
    2011
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zhou, W. and Liang, F. and Shao, Z. and Chen, J. and Zhu, Z. 2011. Heterostructured electrode with concentration gradient shell for highly efficient oxygen reduction at low temperature. Scientific Reports. 1 (Article 155): pp. 1-3.
    Source Title
    Scientific Reports
    DOI
    10.1038/srep00155
    School
    Department of Chemical Engineering
    Remarks

    This open access article is distributed under the Creative Commons license http://creativecommons.org/licenses/by-nc-sa/3.0/

    URI
    http://hdl.handle.net/20.500.11937/28766
    Collection
    • Curtin Research Publications
    Abstract

    Heterostructures of oxides have been widely investigated in optical, catalytic and electrochemical applications, because the heterostructured interfaces exhibit pronouncedly different transport, charge, and reactivity characteristics compared to the bulk of the oxides. Here we fabricated a three-dimensional (3D) heterostructured electrode with a concentration gradient shell. The concentration gradient shell with the composition of Ba 0.5-x Sr 0.5-y Co 0.8 Fe 0.2 O 3-d (BSCF-D) was prepared by simply treating porous Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-d (BSCF) backbone with microwave-plasma. Electrochemical impedance spectroscopy reveals that the oxygen surface exchange rate of the BSCF-D is enhanced by ~250% that of the pristine BSCF due to the appearance of the shell. The heterostructured electrode shows an interfacial resistance as low as 0.148 O cm 2 at 550°C and an unchanged electrochemical performance after heating treatment for 200 h. This method offers potential to prepare heterostructured oxides not only for electrochemical devices but also for many other applications that use ceramic materials.

    Related items

    Showing items related by title, author, creator and subject.

    • Toward Enhanced Oxygen Evolution on Perovskite Oxides Synthesized from Different Approaches: A Case Study of Ba0.5Sr0.5Co0.8Fe0.2O3−δ
      Xu, X.; Pan, Y.; Zhou, W.; Chen, Y.; Zhang, Z.; Shao, Zongping (2016)
      Development of electrocatalysts for the oxygen evolution reaction (OER) plays a critical role in electrochemical water splitting systems. Perovskite oxides represent one category of efficient catalysts for the OER, among ...
    • Silver-modified Ba0.5Sr0.5Co0.8Fe 0.2O3-d as cathodes for a proton conducting solid-oxide fuel cell
      Lin, Y.; Ran, R.; Shao, Zongping (2010)
      Electrochemical performance of silver-modified Ba0.5Sr 0.5Co0.8Fe0.2O3-d (BSCF-Ag) as oxygen reduction electrodes for a protonic intermediate-temperature solid-oxide fuel cell (SOFC-H+) with BaZr0.1Ce0.8Y 0.1O3 (BZCY) ...
    • A top-down strategy for the synthesis of mesoporous Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a cathode precursor for buffer layer-free deposition on stabilized zirconia electrolyte with a superior electrochemical performance
      Su, C.; Xu, X.; Chen, Y.; Liu., Y.; Tade, Moses; Shao, Zongping (2015)
      We develop a facile and effective top-down method for the fabrication of mesoporous Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) oxide with a high specific surface area (∼25 m2 g−1). The original BSCF is first synthesized by the simple ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.