Neural Network Based Models for Short-Term Traffic Flow Forecasting Using a Hybrid Exponential Smoothing and Levenberg–Marquardt Algorithm
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
Copyright © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Collection
Abstract
This paper proposes a novel neural network (NN) training method that employs the hybrid exponential smoothing method and the Levenberg–Marquardt (LM) algorithm, which aims to improve the generalization capabilities of previously used methods for training NNs for short-term traffic flow forecasting. The approach uses exponential smoothing to preprocess traffic flow data by removing the lumpiness from collected traffic flow data, before employing a variant of the LM algorithm to train the NN weights of an NN model. This approach aids NN training, as the preprocessed traffic flow data are more smooth and continuous than the original unprocessed traffic flow data. The proposed method was evaluated by forecasting short-term traffic flow conditions on the Mitchell freeway in Western Australia. With regard to the generalization capabilities for short-term traffic flow forecasting, the NN models developed using the proposed approach outperform those that are developed based on the alternative tested algorithms, which are particularly designed either for short-term traffic flow forecasting or for enhancing generalization capabilities of NNs.
Related items
Showing items related by title, author, creator and subject.
-
Chan, Kit Yan; Dillon, Tharam; Chang, Elizabeth (2013)On-road sensor systems installed on freeways are used to capture traffic flow data for short-term traffic flow predictors for traffic management, in order to reduce traffic congestion and improve vehicular mobility. This ...
-
Chan, Kit; Dillon, Tharam S.; Chang, Elizabeth; Singh, Jaipal (2012)This paper presents an innovative algorithm integrated with particle swarm optimization and artificial neural networks to develop short-term traffic flow predictors, which are intended to provide traffic flow forecasting ...
-
Chan, Kit; Khadem, Saghar; Dillon, Tharam; Palade, Vasile; Singh, Jaipal; Chang, Elizabeth (2012)Over the past two decades, neural networks have been applied to develop short-term traffic flow predictors. The past traffic flow data, captured by on-road sensors, is used as input patterns of neural networks to forecast ...