Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Formation of methyl iodide on a natural manganese oxide

    145571_145572.pdf (681.4Kb)
    Access Status
    Open access
    Authors
    Allard, Sebastien
    Gallard, H.
    Fontaine, C.
    Croue, J.
    Date
    2010
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Allard, Sebastien and Gallard, Herve and Fontaine, Claude and Croue, Jean-Philippe. 2010. Formation of methyl iodide on a natural manganese oxide. Water Research. 44 (15): pp. 4623-4629.
    Source Title
    Water Research
    DOI
    10.1016/j.watres.2010.06.008
    ISSN
    00431354
    Faculty
    Department of Applied Chemistry
    School of Science and Computing
    Faculty of Science and Engineering
    Remarks

    The link to the journal’s home page is: http://www.elsevier.com/wps/find/journaldescription.cws_home/309/description#description Copyright © 2010 Elsevier B.V. All rights reserved

    URI
    http://hdl.handle.net/20.500.11937/28909
    Collection
    • Curtin Research Publications
    Abstract

    This paper demonstrates that manganese oxides can initiate the formation of methyl iodide, a volatile compound that participates to the input of iodine into the atmosphere. The formation of methyl iodide was investigated using a natural manganese oxide in batch experiments for different conditions and concentrations of iodide, natural organic matter(NOM) and manganese oxide. Methyl iodide was formed at concentrations ≤1 μg L-1 for initial iodide concentrations ranging from 0.8 to 38.0 mg L-1. The production of methyl iodide increased with increasing initial concentrations of iodide ion and Mn sand and when pH decreased from 7 to 5. The hydrophilic NOM isolate exhibited the lowest yield of methyl iodide whereas hydrophobic NOM isolates such as Suwannee River HPOA fraction produced the highest concentration of methyl iodide. The formation of methyl iodide could take place through the oxidation of NOM on manganese dioxide in the presence of iodide. However, the implication of elemental iodine cannot be excluded at acidic pH. Manganese oxides can then participate with ferric oxides to the formation of methyl iodide in soils and sediments. The formation of methyl iodide is unlikely in technical systems such as drinking water treatment i.e. for ppt levels of iodide and low contact times with manganese oxides.

    Related items

    Showing items related by title, author, creator and subject.

    • Abiotic formation of methyl iodide on synthetic birnessite: A mechanistic study
      Allard, Sebastien; Gallard, H. (2013)
      Methyl iodide is a well-known volatile halogenated organic compound that contributes to the iodine content in the troposphere, potentially resulting in damage to the ozone layer. Most methyl iodide sources derive from ...
    • Malodorous dimethylpolysulfides in Perth drinking water.
      Heitz, Anna (2002)
      The formation of an objectionable "swampy" odour in drinking water distribution systems in Perth, Western Australia, was first described by Wajon and co-authors in the mid-1980s (Wajon et al., 1985; Wajon et al., 1986; ...
    • Influence of bromide on iodate and iodo-trihalomethane formation during chlorination of iodide-containing waters
      Criquet, J.; Allard, Sebastian; Salhi, E.; Joll, C.; Von Gunten, Urs; Heitz, A. (2012)
      The kinetics of iodate formation during chlorination of iodide-containing waters is a key factor in the formation of iodoorganic compounds. In contrast to bromate, iodate is considered to be non-toxic. A strategy to reduce ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.