Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Bioslurry as a Fuel. 3. Fuel and Rheological Properties of Bioslurry Prepared from the Bio-oil and Biochar of Mallee Biomass Fast Pyrolysis

    Access Status
    Fulltext not available
    Authors
    Abdullah, Hanisom
    Mourant, Daniel
    Li, Chun-Zhu
    Wu, Hongwei
    Date
    2010
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Abdullah, Hanisom and Mourant, Daniel and Li, Chun-Zhu and Wu, Hongwei. 2010. Bioslurry as a Fuel. 3. Fuel and Rheological Properties of Bioslurry Prepared from the Bio-oil and Biochar of Mallee Biomass Fast Pyrolysis. Energy & Fuels. 24 (10): pp. 5669-5676.
    Source Title
    Energy & Fuels
    DOI
    10.1021/ef1008117
    ISSN
    08870624
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/29196
    Collection
    • Curtin Research Publications
    Abstract

    This study investigates fuel and rheological properties of bio-oil/char slurry (i.e., bioslurry) fuels, which were prepared by mixing bio-oil with different concentrations of biochar. The bio-oil and biochar were produced from mallee fast pyrolysis at 500 °C. The excellent grindability of biochar enables desirable particle size reduction of biochar into fine particles, which can be suspended into bio-oil for the preparation of bioslurry fuels. The bioslurry fuels have desired fuel and rheological characteristics, which meet the requirements for combustion and gasification applications. Dependent upon biochar loading, the volumetric energy density of bioslurry is up to 23.2 GJ/m3, achieving a significant energy densification (by a factor >4) in comparison to green wood chips.Bioslurry fuels with high biochar concentrations (11−20 wt %) show non-Newtonian characteristics with pseudo-plastic behavior. The flow behavior index, n, decreases with an increasing biochar concentration. Bioslurry with higher biochar concentrations also demonstrate thixotropic behavior. The bioslurry fuels also have low viscosity (<453 mPa s) and are pumpable at both room and elevated temperatures. The concentrations of Ca, K, N, and S in bioslurry are below the limits of slurry fuel guidelines. Overall, the results in this study suggest that bioslurry fuels achieve substantial volumetric energy densification and are suitable fuels for combustion and gasification applications.

    Related items

    Showing items related by title, author, creator and subject.

    • High energy density fuels derived from mallee biomass: fuel properties and implications
      Abdullah, Hanisom binti (2010)
      Mallee biomass is considered to be a second-generation renewable feedstock in Australia and will play an important role in bioenergy development in Australia. Its production is of large-scale, low cost, small carbon ...
    • Synergy on particulate matter emission during the combustion of bio-oil/biochar slurry (bioslurry)
      Feng, C.; Wu, Hongwei (2018)
      © 2017 Elsevier Ltd Bio-oil/biochar slurry (i.e. bioslurry) is a new type of fuel that is prepared by suspending fine biochar particles into fast pyrolysis bio-oil. This study reports the synergy on PM 10 emission during ...
    • Bioslurry as a fuel. 5. Fuel properties evolution and aging during bioslurry storage
      Zhang, Mingming; Liaw, Sui Boon; Wu, Hongwei (2013)
      This study investigates the evolution of fuel properties and aging of a series of bioslurry fuels prepared from fast pyrolysis bio-oil and biochar at different biochar loading levels (up to 20 wt %) for a storage period ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.