Show simple item record

dc.contributor.authorYu, K.
dc.contributor.authorLu, Zudi
dc.contributor.authorStander, J.
dc.date.accessioned2017-01-30T10:27:12Z
dc.date.available2017-01-30T10:27:12Z
dc.date.created2010-03-29T20:04:53Z
dc.date.issued2009
dc.identifier.citationYu, Keming and Lu, Zudi and Stander, J. 2009. Quantile regression: applications and current research areas. Journal of the Royal Statistical Society, Series D. 52 (3): pp. 331-350.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/2933
dc.description.abstract

Quantile regression offers a more complete statistical model than mean regression and now has widespread applications. Consequently, we provide a review of this technique. We begin with an introduction to and motivation for quantile regression. We then discuss some typical application areas. Next we outline various approaches to estimation. We finish by briefly summarizing some recent research areas.

dc.publisherBlackwell Publishing
dc.relation.urihttp://www.jstor.org/stable/4128208
dc.subjectSkew distribution
dc.subjectConditional distribution
dc.subjectRegression fitting
dc.subjectQuantile
dc.subjectCheck function
dc.titleQuantile regression: applications and current research areas
dc.typeJournal Article
dcterms.source.volume52
dcterms.source.number3
dcterms.source.startPage331
dcterms.source.endPage350
dcterms.source.issn0039-0526
dcterms.source.titleJournal of the Royal Statistical Society, Series D
curtin.accessStatusFulltext not available
curtin.facultySchool of Science and Computing
curtin.facultyDepartment of Mathematics and Statistics
curtin.facultyFaculty of Science and Engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record