Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The hydropyrolysis (HyPy) release of hydrocarbon products from a high maturity kerogen associated with an orogenic Au deposit and their relationship to the mineral matrix

    Access Status
    Fulltext not available
    Authors
    Robert, Aileen
    Grotheer, Hendrik
    Greenwood, Paul
    McCuaig, T.
    Bourdet, J.
    Grice, Kliti
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Robert, A. and Grotheer, H. and Greenwood, P. and McCuaig, T. and Bourdet, J. and Grice, K. 2016. The hydropyrolysis (HyPy) release of hydrocarbon products from a high maturity kerogen associated with an orogenic Au deposit and their relationship to the mineral matrix. Chemical Geology. 425: pp. 127-144.
    Source Title
    Chemical Geology
    DOI
    10.1016/j.chemgeo.2016.01.028
    ISSN
    0009-2541
    School
    Department of Chemistry
    URI
    http://hdl.handle.net/20.500.11937/29356
    Collection
    • Curtin Research Publications
    Abstract

    An innovative experimental approach has been applied to a metamorphosed (> 550 °C) kerogen associated with orogenic Au mineralisation. The novel application of catalytic Hydropyrolysis (HyPy) to mineralised sediments associated with Au-mineralisation successfully liberated GC–MS-detectable hydrocarbons interpreted as indigenous to the high maturity organic matter (OM), and previously proven unamenable to more traditional methods of organic geochemical analyses. These organic compounds were likely sequestered within condensed polyaromatic structures of the high maturity kerogen that exhibited an intimate relationship to the mineral matrix as documented using high resolution in-situ microscopy. The major pyrolysis products were the polycyclic aromatic hydrocarbons (PAHs) pyrene (detected in particularly high abundance), coronene and hydrogenated analogues of these 4- and 7-ringed systems. To help distinguish the importance of specific organic–mineral relationships, each sample was subjected to a sequential demineralisation process using three increasingly stronger acids (i.e. 3 M HCl, 12 M HCl, HF). The kerogen isolated following each demineralisation step was subject to HyPy and then GC–MS analysis. Pyrene and hydrogenated analogues were again the major HyPy products of all demineralised kerogens (similar to the parent kerogen result). Other 2–7 ringed hydrocarbons and a homologous series of n-alkanes also were detected. Subtle differences in the distributions of compounds released and a pronounced increase in the abundance of most HyPy products at each demineralisation step (TOC also showed a general increase) were observed. These observations could be attributed to the increasing release of mineral-bound hydrocarbons, indicating the strong organic affinity for a wide variety of mineral types. The intimate association of the kerogen and minerals was clearly evident in the SEM–EDS photomicrographs of several freshly fractured surfaces that showed OM along mineral boundaries as inclusions, and as continuous infill in mineral grains. Most of the OM is intricately embedded in the clay structures. These mineral–kerogen relationships are retained even when the samples were finely powdered. Laser Raman analysis identified highly ordered and aromatic graphitic like carbonaceous material (CM-1) associated with the sedimentary matrix, although a distinct type of less ordered CM (CM-2) was also identified in proximity to sulphide veins — reflecting a separate organic origin of preservation pathway. The sequestration and protection of these hydrocarbons from thermal destruction likely result from an intimate structural relationship between the minerals and OM. This pioneering analytical approach represents a major breakthrough to the organic characterisation of sediments metamorphosed by high temperature mineralisation processes.

    Related items

    Showing items related by title, author, creator and subject.

    • Evidence and origin of different types of sedimentary organic matter from a Paleoproterozoic orogenic Au deposit
      Mirasol-Robert, A.; Grotheer, H.; Bourdet, J.; Suvorova, A.; Grice, Kliti; McCuaig, T.; Greenwood, P. (2017)
      Carbonaceous material (CM) is thought to be a key reductant contributing to the formation of large Au deposits, but there has been much speculation about its source, molecular composition and reactivity. The first ...
    • Characterisation of aquatic natural organic matter by micro-scale sealed vessel pyrolysis
      Berwick, Lyndon (2009)
      The analytical capacity of MSSV pyrolysis has been used to extend the structural characterisation of aquatic natural organic matter (NOM). NOM can contribute to various potable water issues and is present in high ...
    • Significance of lignin and fungal markers in the Devonian (407 Ma) Rhynie Chert
      Holman, Alex ; Poropat, Stephen; Greenwood, Paul ; Bhandari, Rajendra; Tripp, Madison; Hopper, Peter; Schimmelmann, A.; Brosnan, Luke; Rickard, William ; Wolkenstein, K.; Grice, Kliti (2024)
      The Rhynie Chert (Lower Devonian, Scotland) hosts a remarkably well-preserved early terrestrial ecosystem. Organisms including plants, fungi, arthropods, and bacteria were rapidly silicified due to inundation by silica-rich ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.