Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights

    167786_167786.pdf (1.499Mb)
    Access Status
    Open access
    Authors
    Hirt, Christian
    Gruber, T.
    Featherstone, Will
    Date
    2011
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Hirt, C. and Gruber, T. and Featherstone, W.E. 2011. Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights. Journal of Geodesy. 85 (10): pp. 723-740.
    Source Title
    Journal of Geodesy
    DOI
    10.1007/s00190-011-0482-y
    ISSN
    09497714
    School
    Department of Spatial Sciences
    Remarks

    The original publication is available at: http://www.springerlink.com

    URI
    http://hdl.handle.net/20.500.11937/29472
    Collection
    • Curtin Research Publications
    Abstract

    Recently, four global geopotential models (GGMs) were computed and released based on the first two months of data collected by the GOCE (Gravity field and steady-state Ocean Circulation Explorer) dedicated satellite gravity field mission. Given that GOCE is a technologically complex mission and different processing strategies were applied to real space-collected GOCE data for the first time, evaluation of the new models is an important aspect. As a first assessment strategy, we use terrestrial gravity data over Switzerland and Australia and astrogeodetic vertical deflections over Europe and Australia as ground-truth data sets for GOCE model evaluation. We apply a spectral enhancement method (SEM) to the truncated GOCE GGMs to make their spectral content more comparable with the terrestrial data. The SEM utilises the high-degree bands of EGM2008 and residual terrain model (RTM) data as a data source to widely bridge the spectral gap between the satellite and terrestrial data. Analysis of RMS (root mean square) errors is carried out as a function of (i) the GOCE GGM expansion degree and (ii) the four different GOCE GGMs. The RMS curves are also compared against those from EGM2008 and GRACE-based GGMs.As a second assessment strategy, we compare global grids of GOCE GGM and EGM2008 quasigeoid heights. In connection with EGM2008 error estimates, this allows location of regions where GOCE is likely to deliver improved knowledge on the Earth’s gravity field. Our ground truth data sets, together with the EGM2008 quasigeoid comparisons, signal clear improvements in the spectral band ~160-165 to ~180-185 in terms of spherical harmonic degrees for the GOCE-based GGMs, fairly independently of the individual GOCE model used. The results from both assessments together provide strong evidence that the first two months of GOCE observations improve the knowledge of the Earth’s static gravity field at spatial scales between ~125 and ~110 km, particularly over parts of Asia, Africa, South America and Antarctica, in comparison to the pre-GOCE-era.

    Related items

    Showing items related by title, author, creator and subject.

    • Evaluation of the third- and fourth-generation GOCE Earth gravity field models with Australian terrestrial gravity data in spherical harmonics
      Rexer, Moritz; Hirt, Christian; Pail, R.; Claessens, Sten (2014)
      In March 2013 the fourth generation of ESA’s (European Space Agency) global gravity field models, DIR4 (Bruinsma et al, 2010b) and TIM4 (Pail et al, 2010), generated from the GOCE (Gravity field and steady-state Ocean ...
    • A new degree-2190 (10 km resolution) gravity field model for Antarctica developed from GRACE, GOCE and Bedmap2 data
      Hirt, Christian; Rexer, M.; Scheinert, M.; Pail, R.; Claessens, Sten; Holmes, S. (2015)
      The current high-degree global geopotential models EGM2008 and EIGEN-6C4 resolve gravity field structures to ~10 km spatial scales over most parts of the of Earth’s surface. However, a notable exception is continental ...
    • Satellite and airborne gravimetry: their role in geoid determination and some suggestions
      Featherstone, Will (2010)
      This paper will cover a variety of topics. First, it will briefly overview the GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity field and steady-state Ocean Circulation Explorer) satellite mission concepts, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.