Wetting characteristics and regularity of AISI 4135 steel in marine splash zone
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The corrosion rate of steels in marine splash zone is high, and it is generally considered to be due to the environmental characteristics of this zone. One of the important distinctions between the marine splash zone and the normal atmospheric zone is the wetting condition of steel surfaces. However even in the same splash zone, the corrosion rate of one spot is different to that of the other ones on the surface of one steel pile, thereby on which a corrosion rate peak should exist at a specific spot. In order to reveal the nature of the difference in corrosion rate at different positions of a steel pile, the variations of the wetting condition of steel specimens with tidal movement was monitored, while the specimens located at different positions along a vertical line passing the tide zone. It follows that the wetting degree of the steel specimen in the splash zone is closely related with its location and the tidal movement, and which substantially follows an overall trend that the wetting degree increases with the rising tide level and decrease with the lowering tide level; the wetting degree of the steel specimen increases with the increase of exposure time. But for a specific moment, a certain relationship dose not exist for the wetting degree with the tide movement and the location of steel specimen. Even though by the time of the low tide level the steel specimen located in splash zone is still in a wet condition due to the effect of the high air humidity and flying seawater foam, which correlates also to the high moisture absorption characteristics of corrosion products scale on the carbon steel. The extreme corrosion rate of the steel in splash zone corresponds to a specific wetting degree. Furthermore, on the area below the extreme point, thin water film on the surface of steel specimens can often be observed by naked eyes, which is consistent with the relationship between corrosion rate and thickness of liquid film on the metal surface.
Related items
Showing items related by title, author, creator and subject.
-
Magnetite and its galvanic effect on the corrosion of carbon steel under carbon dioxide environmentsChan, Emilyn Wai Lyn (2011)Carbon dioxide corrosion, which can cause premature failure of oil and gas pipelines, is an imperative health, safety and environmental issue in the oil and gas industry. Extensive studies have been conducted to understand ...
-
Huang, Y.; Yu, X.; Zhang, Q.; De Marco, Roland (2017)© The Electrochemical Society of Japan, All rights reserved.The corrosion behavior of high strength low alloy AISI 4135 steel was studied following extended exposure to a Qingdao field environment. When electrochemically ...
-
Halim, Amalia Yunita (2011)The successful control of reservoir souring by nitrate injection has been well documented in the literature. Recent interest has centred on how nitrate application can increase the corrosion risk in pipelines and metal ...