Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    On biases in precise point positioning with multi-constellation and multi-frequency GNSS data

    238485_238485.pdf (668.8Kb)
    Access Status
    Open access
    Authors
    El-Mowafy, Ahmed
    Deo, M.
    Rizos, C.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    El-Mowafy, A. and Deo, M. and Rizos, C. 2016. On biases in precise point positioning with multi-constellation and multi-frequency GNSS data. Measurement Science and Technology. 27 (3): pp. 1-10.
    Source Title
    Measurement Science and Technology
    DOI
    10.1088/0957-0233/27/3/035102
    ISSN
    0957-0233
    School
    Department of Spatial Sciences
    Remarks

    This is an author-created, un-copyedited version of an article accepted for publication in Measurement Science and Technology. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://doi.org/10.1088/0957-0233/27/3/035102

    URI
    http://hdl.handle.net/20.500.11937/29543
    Collection
    • Curtin Research Publications
    Abstract

    © 2016 IOP Publishing Ltd. Various types of biases in Global Navigation Satellite System (GNSS) data preclude integer ambiguity fixing and degrade solution accuracy when not being corrected during precise point positioning (PPP). In this contribution, these biases are first reviewed, including satellite and receiver hardware biases, differential code biases, differential phase biases, initial fractional phase biases, inter-system receiver time biases, and system time scale offset. PPP models that take account of these biases are presented for two cases using ionosphere-free observations. The first case is when using primary signals that are used to generate precise orbits and clock corrections. The second case applies when using additional signals to the primary ones. In both cases, measurements from single and multiple constellations are addressed. It is suggested that the satellite-related code biases be handled as calibrated quantities that are obtained from multi-GNSS experiment products and the fractional phase cycle biases obtained from a network to allow for integer ambiguity fixing. Some receiver-related biases are removed using between-satellite single differencing, whereas other receiver biases such as inter-system biases are lumped with differential code and phase biases and need to be estimated. The testing results show that the treatment of biases significantly improves solution convergence in the float ambiguity PPP mode, and leads to ambiguity-fixed PPP within a few minutes with a small improvement in solution precision.

    Related items

    Showing items related by title, author, creator and subject.

    • Evaluation of ambiguity success rates based on multi-frequency GPS and Galileo
      Arora, Balwinder Singh (2012)
      The precise positioning applications have long been carried out using dual frequency carrier phase and code observables from the Global Positioning System (GPS). The carrier phase observables are very precise in comparison ...
    • A method for processing GNSS data from regional reference networks to enable single-frequency PPP-RTK
      Zhang, B.; Odijk, Dennis (2015)
      Global Navigation Satellite System (GNSS) data from reference station networks deployed globally can facilitate positioning, navigation and timing applications. To enable precise positioning for dual-frequency users, ...
    • Do GNSS parameters always benefit from integer ambiguity resolution? A PPP-RTK network scenario
      Teunissen, Peter; Khodabandeh, A. (2014)
      All rights reserved. In this contribution we study the impact of integer ambiguity resolution (IAR) on the precision of GNSS estimable parameters. In doing so, a multivariate formulation of the GNSS undifferenced observation ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.