Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Solution combustion synthesis of Co oxide-based catalysts for phenol degradation in aqueous solution

    Access Status
    Fulltext not available
    Authors
    Liang, Hanwen
    Ting, Ying
    Sun, Hongqi
    Ang, Ming
    Tade, Moses
    Wang, Shaobin
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Liang, H. and Ting, Y. and Sun, H. and Ang, M. and Tade, M. and Wang, S. 2012. Solution combustion synthesis of Co oxide-based catalysts for phenol degradation in aqueous solution. Journal of Colloid and Interface Science. 372 (1): pp. 58-62.
    Source Title
    Journal of Colloid and Interface Science
    DOI
    10.1016/j.jcis.2012.01.043
    ISSN
    00219797
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/29551
    Collection
    • Curtin Research Publications
    Abstract

    Solution combustion using urea as a fuel was employed to synthesise Co oxide and Al2O3-, SiO2- and TiO2-supported Co oxide catalysts. The catalysts were characterised using several techniques such as N2 adsorption/desorption, XRD, FTIR, UV–vis diffuse reflectance and SEM–EDX, and their catalytic activity was evaluated in phenol degradation in aqueous solution with sulphate radicals. Solution combustion is a simple and effective method in preparation of supported Co catalysts. Co3O4 was the major Co crystal phase in the samples prepared via the combustion synthesis. Bulk Co3O4 particles were not effective in reaction, but supported Co oxides showed higher activity than unsupported Co oxide. The supports influenced Co dispersion and catalytic activity. Co/TiO2 exhibited the highest activity, but it deactivated much faster than other two supported catalysts. Co/SiO2 showed a comparable activity to Co/Al2O3 and the best stability among the three Al2O3-, SiO2- and TiO2-supported Co catalysts.

    Related items

    Showing items related by title, author, creator and subject.

    • Catalytic partial oxidation of propylene to acrolein: the catalyst structure, reaction mechanisms and kinetics
      Fansuri, Hamzah (2005)
      Bismuth molybdates have long been known as active catalysts for selective oxidation of olefins. There are several phases of bismuth molybdates but only three of them are known to be active for partial oxidation of propylene ...
    • Supported cobalt catalysts by one-pot aqueous combustion synthesis for catalytic phenol degradation
      Sun, Hongqi; Liang, Hanwen; Zhou, Guanliang; Wang, Shaobin (2013)
      Cobalt oxides (Co) and Al2O3-, SiO2-, and TiO2-supported cobalt oxide catalysts were prepared by anaqueous combustion method using urea and glycine as fuels. Their catalytic performance in activationof OXONE for phenol ...
    • Heterogeneous catalytic oxidation of organic compound for wastewater treatme
      Muhammad, Syaifullah (2012)
      This research is focused on heterogeneous catalytic oxidation of phenol usually found in wastewater. Active metals of Ruthenium (Ru) and Cobalt (Co) have been impregnated on cheap support materials such as activated carbon ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.