CO2 absorption studies on mixed alkali orthosilicates containing rare-earth second-phase additives
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2015 American Chemical Society. Lithium silicate containing eutectic orthosilicate mixtures developed by a solid-state route displayed excellent characteristics as carbon dioxide absorbents at elevated temperature, showing absorption capacity of 256 mg g-1. Incorporation of second-phase materials was investigated as a strategy to enhance the stability of the absorbent materials against agglomeration and sintering during powder processing and high-temperature cyclic absorption/desorption loading. Yttrium oxide, gadolinium oxide, and lanthanum phosphate were added as second phases to the absorbent. It was found that when the composites were rich in absorbents (10:1 and 20:1 absorbent/second phase), the absorption performance was hardly influenced by the type of the second-phase material present. Yttrium oxide or gadolinium oxide additions in large quantities were found to enhance the absorption capacity of the orthosilicate phase. The 2:1 sample containing yttrium oxide gave absorption capacity of 315 mg g-1 of orthosilicate absorbent present in the composite sample. On the basis of the structural and morphological studies, we believe that the nonreactive second-phase components formed a virtual shell against the segregation of absorbent phase, thereby helping to improve their absorption performance. Cyclic studies have supported the superior stability and performance of such composite absorbent materials.
Related items
Showing items related by title, author, creator and subject.
-
Subha, P.; Nair, Balagopal; Hareesh, P.; Mohamed, A.P.; Yamaguchi, T.; Warrier, K.G.K.; Hareesh, U.S. (2014)Platelet-shaped lithium orthosilicate particles synthesized by a sol–gel approach employing the precursors lithium nitrate and colloidal silica displayed enhanced absorption kinetics for CO2 compared to the powders prepared ...
-
Allpike, Bradley (2008)Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
-
McMahon, Darryl (2015)This paper explores the possibility of generalised periodic structure waves (PSW) that include the well-known Bloch-Floquet (BF) waves as a special case. We consider two types of structure waves (SW) in an infinite, ...