Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Nucleophilic thiol-Michael chemistry and hyperbranched (co)polymers: Synthesis and ring-opening metathesis (co)polymerization of novel difunctional exo-7-oxanorbornenes with in situ inimer formation

    Access Status
    Fulltext not available
    Authors
    Liu, M.
    Tan, B.
    Burford, R.
    Lowe, Andrew
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Liu, M. and Tan, B. and Burford, R. and Lowe, A. 2013. Nucleophilic thiol-Michael chemistry and hyperbranched (co)polymers: Synthesis and ring-opening metathesis (co)polymerization of novel difunctional exo-7-oxanorbornenes with in situ inimer formation. Polymer Chemistry. 4 (11): pp. 3300-3311.
    Source Title
    Polymer Chemistry
    DOI
    10.1039/c3py00110e
    ISSN
    1759-9954
    School
    Nanochemistry Research Institute
    URI
    http://hdl.handle.net/20.500.11937/2968
    Collection
    • Curtin Research Publications
    Abstract

    Nucleophile-initiated thiol-Michael chemistry was employed to prepare a series of mono- and di-functional exo-7-oxanorbornenes from the reaction between mono- or dithiols with 2-((3aR,7aS)-1,3-dioxo-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindol-2(3H)-yl)ethyl acrylate. Homopolymerization of the difunctional species, bis(2-((3aR,7aS)-1,3-dioxo-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindol-2(3H)-yl)ethyl)-3,3′-((1,4-phenylenebis(methylene))bis (sulfanediyl))dipropanoate (M1), with Grubbs' first generation catalyst, RuCl2(PCy3)2CHPh, yields a hyperbranched polymer with up to 90% of polymerizable C C bonds consumed as judged by 1H NMR spectroscopy. SEC analysis is consistent with the formation of a hyperbranched structure with an absolute weight average molecular weight (Mw), as measured by static light scattering in CH2Cl2, determined to be 381 000. Bis(2-((3aR,7aS)-1,3-dioxo-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindol-2(3H)-yl)ethyl)-3,3′-((thiobis(ethane-2,1-diyl))bis (sulfanediyl))dipropanoate (M2) could not be polymerized with the Grubbs' 1st generation catalyst but rapidly polymerized with 50% conversion of monomeric C C bonds with the Grubbs' 3rd generation species. Bis(2-((3aR,7aS)-1,3-dioxo-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindol-2(3H)-yl)ethyl)-7,10-dioxa-4,13-dithiahexadecane-1,16-dioate (M3), in a similar fashion to M1, could be readily homopolymerized to high conversion with the 1st generation species giving organosoluble material.The statistical copolymerization of M1 or M3 with a series of monofunctional monomers containing pyrrole, fluoro, POSS and fluorene functionality is demonstrated. Copolymers of variable composition are readily prepared with the Grubbs' 1st generation catalyst with, in general, C C bond conversions in excess of 90%. Finally, the preparation of novel linear-hyperbranched AB diblock copolymers is demonstrated via the sequential polymerization of a monofunctional sugar derivative, (2S,3S,4S,5R,6R)-6-((3-(2-((3aR,7aS)-1,3-dioxo-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindol-2(3H)-yl)ethoxy)-3-oxopropyl)thio) tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate (M8) which yields a well-defined linear homopolymer, as judged by SEC, followed by chain extension with the difunctional substrate M3.

    Related items

    Showing items related by title, author, creator and subject.

    • Thiol-Michael coupling and ring-opening metathesis polymerization: Facile access to functional exo-7-oxanorbornene dendron macromonomers
      Liu, M.; Burford, R.; Lowe, Andrew (2014)
      This paper describes the synthesis of the 2- and 4-functional acrylic exo-7-oxanorbornene species 2-((2-((3aR,7aS)-1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-epoxyisoindol-2-yl)ethoxy) carbonyl)-2-methylpropane-1,3-diyl ...
    • Ethanolic RAFT Dispersion Polymerization of 2-(Naphthalen-2-yloxy)ethyl Methacrylate and 2-Phenoxyethyl Methacrylate with Poly[2-(dimethylamino)ethyl methacrylate] Macro-Chain Transfer Agents
      Pei, Y.; Dharsana, N.; Lowe, Andrew (2015)
      The ethanolic reversible addition-fragmentation chain transfer dispersion polymerization (RAFTDP), at 21 wt-%, of 2-(naphthalen-2-yloxy)ethyl methacrylate (NOEMA) and 2-phenoxyethyl methacrylate (POEMA) with a poly[2- ...
    • Synthesis and characterization of thermosensitive macroporous hydrogels for controlled drug delivery applications
      Setiyorini, Yuli (2010)
      The purpose of this research was to synthesize novel macroporous thermosensitive hydrogels and to characterise the produced hydrogel materials for controlled drug delivery applications.Twelve hydrogel polymers were ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.