Iron encapsulated in boron and nitrogen codoped carbon nanotubes as synergistic catalysts for Fenton-like reaction
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2016 Elsevier Ltd. Iron nanoparticles (NPs) encapsulated in B, N-codoped carbon nanotubes (Fe@C-BN) as heterogeneous Fenton-like catalysts were obtained by a simple and scalable pyrolysis method, and their performances were examined in the oxidative degradation of various organics in the presence of the different oxidants. The results showed that organic dyes can be effectively degraded by Fe@C-BN in the presence of peroxymonosulfate. Calcination temperature and mass of iron salt significantly affected the structures and performances of the catalysts. The effects of several reaction conditions, such as initial dye concentration, oxidant type (peroxymonosulfate, peroxydisulfate, and H2O2) and dosage, initial pH, inorganic anions, reaction temperature and dye types on oxidation as well as the stability of the composite were extensively evaluated in view of the practical applications. Through the investigation of reaction processes, HO· and SO4·- radicals were identified using quenching experiments. Owing to the synergistic effects between the iron NPs and B, N-doped carbon, Fe@C-BN catalysts intrinsically display an excellent catalytic activity for Fenton-like reaction. This study gives new insights into the design and preparation of iron NPs encapsulated in B, N-codoped carbon nanotubes as an effective strategy to enhance the overall catalytic activity.
Related items
Showing items related by title, author, creator and subject.
-
Fansuri, Hamzah (2005)Bismuth molybdates have long been known as active catalysts for selective oxidation of olefins. There are several phases of bismuth molybdates but only three of them are known to be active for partial oxidation of propylene ...
-
Zhu, Jian N. (2001)Utilisation of natural gas (mainly methane, CH[subscript]4), a clean and abundant resource, is of great importance. Conventional method, steam reforming, though still dominant, requires a considerately high capital ...
-
Magnetite and its galvanic effect on the corrosion of carbon steel under carbon dioxide environmentsChan, Emilyn Wai Lyn (2011)Carbon dioxide corrosion, which can cause premature failure of oil and gas pipelines, is an imperative health, safety and environmental issue in the oil and gas industry. Extensive studies have been conducted to understand ...