Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Hollow micro/nanomaterials as nanoreactors for photocatalysis

    193474_193474.pdf (823.1Kb)
    Access Status
    Open access
    Authors
    Li, X.
    Liu, Jian
    Masters, A.
    Pareek, Vishnu
    Maschmeyer, T.
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Li, Xiaobo and Liu, Jian and Masters, Anthony F. and Pareek, Vishnu K. Maschmeyer, Thomas. 2013. Hollow micro/nanomaterials as nanoreactors for photocatalysis. APL Materials. 1 (4): 041101-1 – 041101-8.
    Source Title
    APL Materials
    DOI
    10.1063/1.4826155
    ISSN
    2166532X
    Remarks

    This article is published under the Open Access publishing model and distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/. Please refer to the licence to obtain terms for any further reuse or distribution of this work.

    URI
    http://hdl.handle.net/20.500.11937/29707
    Collection
    • Curtin Research Publications
    Abstract

    Learning from nature, one of the most prominent goals of photocatalysis is to assemble multifunctional photocatalytic units in an integrated, high performance device that is capable of using solar energy to produce “solar hydrogen” from aqueous media. By analogy with natural systems it is clear that scaffolds with multi-scale structural architectures are necessary. In this perspective, recent progress related to the use of hollow micro/nanomaterials as nanoreactors for photocatalysis is discussed. Organised, multi-scale assemblies of photocatalytic units on hollow scaffolds is an emerging area that shows much promise for the synthesis of high performance photocatalysts. Not only do improved transport and diffusion characteristics play an import role, but increased electron/hole separation lifetimes as well as improved light harvesting characteristics by the hollow structures also do so and are touched upon in this short perspective.

    Related items

    Showing items related by title, author, creator and subject.

    • Optimizing Oxygen Transport Through La0.6Sr0.4Co0.2Fe0.8O3-δ Hollow Fiber by Microstructure Modification and Ag/Pt Catalyst Deposition
      Han, D.; Sunarso, J.; Tan, X.; Yan, Z.; Liu, Lihong; Liu, Shaomin (2012)
      This work compares the oxygen permeation fluxes of five different La0.6Sr0.4Co0.2Fe0.8O3−δ membranes (e.g. disk, conventional hollow fiber, modified hollow fiber, Ag- or Pt-deposited hollow fiber membranes) to elucidate ...
    • Synthesis and Application of Hollow Nanostructured Silica
      Liu, Jian; Qiao, S.; Lu, G. (2011)
      Hollow silica nanostructures have been the subject of widespread research over the past decades. In recent years, hollow silica nanostructures have been the focus of numerous studies involving synthesis, characterisation, ...
    • High performanceBaCe0.8Y0.2O3-a (BCY) hollow fibre membranes for hydrogen permeation
      Tan, X.; Tan, X.; Yang, N.; Meng, B.; Zhang, K.; Liu, Shaomin (2014)
      In this work, BaCe0.8Y0.2O3-a (BCY) perovskite hollow fibre membranes were fabricated by a phase inversion and sintering method. BCY powder was prepared by the sol–gel technique using ethylenediaminetetraacetic acid(EDTA) ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.