Show simple item record

dc.contributor.authorLiu, Y.
dc.contributor.authorZhou, Guanglu
dc.contributor.authorIbrahim, Nur Fadhilah
dc.date.accessioned2017-01-30T13:14:47Z
dc.date.available2017-01-30T13:14:47Z
dc.date.created2015-03-03T20:17:29Z
dc.date.issued2010
dc.date.submitted2015-03-04
dc.identifier.citationLiu, Y. and Zhou, G. and Ibrahim, N.F. 2010. An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor. Journal of Computational and Applied Mathematics. 235 (1): pp. 286-292.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/29734
dc.identifier.doi10.1016/j.cam.2010.06.002
dc.description.abstract

In this paper we propose an iterative method to calculate the largest eigenvalue of a nonnegative tensor. We prove this method converges for any irreducible nonnegative tensor. We also apply this method to study the positive definiteness of a multivariate form.

dc.publisherElsevier
dc.titleAn always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor
dc.typeJournal Article
dcterms.dateSubmitted2015-03-04
dcterms.source.volume235
dcterms.source.startPage286
dcterms.source.endPage292
dcterms.source.issn0377-0427
dcterms.source.titleJournal of Computational and Applied Mathematics
curtin.digitool.pid218752
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusOpen access via publisher


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record