Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Parental media of natural diamonds and primary mineral inclusions in them: Evidence from physicochemical experiment

    Access Status
    Fulltext not available
    Authors
    Litvin, Y.
    Vasilyev, Prokopiy
    Bobrov, A.
    Okoemova, V.
    Kuzyura, A.
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Litvin, Y. and Vasilyev, P. and Bobrov, A. and Okoemova, V. and Kuzyura, A. 2012. Parental media of natural diamonds and primary mineral inclusions in them: Evidence from physicochemical experiment. Geochemistry International. 50 (9): pp. 726-759.
    Source Title
    Geochemistry International
    DOI
    10.1134/S0016702912070051
    ISSN
    1556-1968
    School
    Department of Applied Geology
    URI
    http://hdl.handle.net/20.500.11937/29872
    Collection
    • Curtin Research Publications
    Abstract

    A generalized diagram was constructed for the compositions of multicomponent heterogeneous parental media for diamonds of kimberlite deposits on the basis of the mantle carbonatite concept of diamond genesis. The boundary compositions on the diagram of the parental medium are defined by the components of minerals of the peridotite and eclogite parageneses, mantle carbonatites, carbon, and the components of volatile compounds of the C-O-H system and accessory phases, both soluble (chlorides, phosphates, and others) and insoluble (sulfides and others) in carbonate-silicate melts. This corresponds to the compositions of minerals, melts, and volatile components from primary inclusions in natural diamonds, as well as experimental estimations of their phase relations. Growth media for most natural diamonds are dominated by completely miscible carbonate-silicate melts with dissolved elemental carbon. The boundary compositions for diamond formation (concentration barriers of diamond nucleation) in the cases of peridotite-carbonate and eclogite-carbonate melts correspond to 30 wt % peridotite and 35 wt % eclogite; i.e., they lie in the carbonatite concentration range. Phase relations were experimentally investigated at 7 GPa for the melting of the multicomponent heterogeneous system eclogite-carbonatite-sulfide-diamond with a composition close to the parental medium under the conditions of the eclogite paragenesis. As a result, “the diagram of syngenesis” was constructed for diamond, as well as paragenetic and xenogenic mineral phases. Curves of diamond solubility in completely miscible carbonate-silicate and sulfide melts and their relationships with the boundaries of the fields of carbonate-silicate and sulfide phases were determined. This allowed us to establish the physicochemical mechanism of natural diamond formation and the P-T conditions of formation of paragenetic silicate and carbonate minerals and coexistence of xenogenic sulfide minerals and melts. Physicochemical conditions of the capture of paragenetic and xenogenic phases by growing diamonds were revealed. Based on the mantle carbonatite concept of diamond genesis and experimental data, a genetic classification of primary inclusions in natural diamond was proposed. The phase diagrams of syngenesis of diamond, paragenetic, and xenogenic phases provide a basis for the analysis of the physicochemical history of diamond formation in carbonatite magma chambers and allow us to approach the formation of such chambers in the mantle material of the Earth.

    Related items

    Showing items related by title, author, creator and subject.

    • Fluid generation and evolution during exhumation of deeply subducted UHP continental crust: Petrogenesis of composite granite-quartz veins in the Sulu belt, China
      Wang, S.; Wang, L.; Brown, M.; Piccoli, P.; Johnson, Tim; Feng, P.; Deng, H.; Kitajima, K.; Huang, Y. (2017)
      Composite granite-quartz veins occur in retrogressed ultrahigh pressure (UHP) eclogite enclosed in gneiss at General's Hill in the central Sulu belt, eastern China. The granite in the veins has a high-pressure (HP) mineral ...
    • Stable H–C–O isotope and trace element geochemistry of the Cummins Range Carbonatite Complex, Kimberley region, Western Australia: implications for hydrothermal REE mineralization, carbonatite evolution and mantle source regions
      Downes, P.; Demeny, A.; Czuppon, G.; Jacques, A.; Verrall, M.; Sweetapple, M.; Adams, D.; McNaughton, Neal; Gwalani, L.; Griffin, B.J. (2014)
      The Neoproterozoic Cummins Range Carbonatite Complex (CRCC) is situated in the southern Halls Creek Orogen adjacent to the Kimberley Craton in northern Western Australia. The CRCC is a composite, subvertical to vertical ...
    • Origin of carbonatites in the South Qinling orogen: Implications for crustal recycling and timing of collision between the South and North China Blocks
      Xu, C.; Chakhmouradian, A.; Taylor, R.; Kynicky, J.; Li, W.; Song, W.; Fletcher, Ian (2014)
      Most studies of compositional heterogeneities in the mantle, related to recycling of crustal sediments or delaminated subcontinental lithosphere, come from oceanic setting basalts. In this work, we present direct ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.