Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Biogenic amines in fish: Roles in intoxication, spoilage, and nitrosamine formation-A review

    Access Status
    Fulltext not available
    Authors
    Al Bulushi, I.
    Poole, S.
    Deeth, H.
    Dykes, Gary
    Date
    2009
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Al Bulushi, I. and Poole, S. and Deeth, H. and Dykes, G. 2009. Biogenic amines in fish: Roles in intoxication, spoilage, and nitrosamine formation-A review. Critical Reviews in Food Science and Nutrition. 49 (4): pp. 369-377.
    Source Title
    Critical Reviews in Food Science and Nutrition
    DOI
    10.1080/10408390802067514
    ISSN
    1040-8398
    School
    School of Public Health
    URI
    http://hdl.handle.net/20.500.11937/29875
    Collection
    • Curtin Research Publications
    Abstract

    Biogenic amines are non-volatile amines formed by decarboxylation of amino acids. Although many biogenic amines have been found in fish, only histamine, cadaverine, and putrescine have been found to be significant in fish safety and quality determination. Despite a widely reported association between histamine and scombroid food poisoning, histamine alone appears to be insufficient to cause food toxicity. Putrescine and cadaverine have been suggested to potentiate histamine toxicity. With respect to spoilage on the other hand, only cadaverine has been found to be a useful index of the initial stage of fish decomposition. The relationship between biogenic amines, sensory evaluation, and trimethylamine during spoilage are influenced by bacterial composition and free amino acid content. A mesophilic bacterial count of log 6-7 cfu/g has been found to be associated with 5 mg histamine/100 g fish, the Food and Drug Administration (FDA) maximum allowable histamine level. In vitro studies have shown the involvement of cadaverine and putrescine in the formation of nitrosamines, nitrosopiperidine (NPIP), and nitrosopyrrolidine (NPYR), respectively. In addition, impure salt, high temperature, and low pH enhance nitrosamine formation, whereas pure sodium chloride inhibits their formation. Understanding the relationships between biogenic amines and their involvement in the formation of nitrosamines could explain the mechanism of scombroid poisoning and assure the safety of many fish products. © Taylor and Francis Group, LLC.

    Related items

    Showing items related by title, author, creator and subject.

    • Formation of N-nitrosamines from chlorination and chloramination of molecular weight fractions of natural organic matter
      Kristiana, Ina; Tan, J.; Joll, Cynthia; Heitz, Anna; Von Gunten, U.; Charrois, Jeffrey (2013)
      N-Nitrosamines are a class of disinfection by-products (DBPs) that have been reported to be more toxic than the most commonly detected and regulated DBPs. Only a few studies investigating the formation of N-nitrosamines ...
    • Formation of NDMA by chloramination of nitrogenous contaminants: Potential role of bromide and dissolved oxygen
      Le Roux, J.; Gallard, H.; Croue, Jean-Philippe (2011)
      Disinfection with monochloramine is known to significantly reduce the formation of regulated disinfection by-products (i.e. trihalomethanes and haloacetic acids) as compared to chlorination. Moreover, monochloramine can ...
    • Characterization of the Molecular Weight and Reactivity of Natural Organic Matter in Surface Waters
      Kristiana, Ina; Tan, J.; McDonald, Suzanne; Joll, Cynthia; Heitz, Anna (2014)
      Natural organic matter (NOM) can impact on all aspects of water treatments processes. Understanding the physical and chemical characteristics of NOM is essential to improving drinkingwater treatment processes. The size ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.