A fast robust method for fitting gamma distributions
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The art of fitting gamma distributions robustly is described. In particular we compare methods of fitting via minimizing a Cramér Von Mises distance, an L 2 minimum distance estimator, and fitting a B-optimal M-estimator. After a brief prelude on robust estimation explaining the merits in terms of weak continuity and Fréchet differentiability of all the aforesaid estimators from an asymptotic point of view, a comparison is drawn with classical estimation and fitting. In summary, we give a practical example where minimizing a Cramér Von Mises distance is both efficacious in terms of efficiency and robustness as well as being easily implemented. Here gamma distributions arise naturally for "in control" representation indicators from measurements of spectra when using fourier transform infrared (FTIR) spectroscopy. However, estimating the in-control parameters for these distributions is often difficult, due to the occasional occurrence of outliers.
Related items
Showing items related by title, author, creator and subject.
-
Brcic, Ramon (2002)This thesis addresses some problems that arise in signal processing when the noise is impulsive and follows a heavy tailed distribution. After reviewing several of the more well known heavy- tailed distributions the common ...
-
Xiang, Liming; Yau, Kelvin; Lee, Andy (2012)When analyzing clustered count data derived from several latent subpopulations, the finite mixture of the Poisson mixed-effect model is an immediate strategy to model the underlying heterogeneity. Within the generalized ...
-
Li, Bin; Rong, Yue; Sun, Jie; Teo, Kok Lay (2017)A receiver design problem for multi-access space-time block coded multiple-input multiple-output systems is considered. To hedge the mismatch between the true and the estimated channel state information (CSI), several ...