Effects of nitrogen-, boron-, and phosphorus-doping or codoping on metal-free graphene catalysis
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Funding and Sponsorship
Collection
Abstract
Graphene-based materials have been demonstrated as excellent alternatives to traditional metal-based catalysts in environmental remediation. The metal-free nature of the nanocarbons can completely prevent toxic metal leaching and the associated secondary contamination. In this study, nitrogen doped graphene (NG) at a doping level of 6.54 at.% was prepared at mild conditions. Moreover, B- and P-doping or codoping with N in graphene were also achieved by a simple route. The modified graphene can efficiently activate peroxymonosulfate (PMS) to produce sulfate radicals to oxidize phenol solutions. Kinetic studies indicated that initial phenol concentration, PMS dosage, and temperature presented significant influences on the degradation rates. Electron paramagnetic resonance (EPR) analysis provided further insights into the evolution of active radicals during the activation of PMS and SO4•− was believed to be the primary radicals in the oxidation reactions. This study demonstrated a metal-free material for green catalysis in environmental remediation.
Related items
Showing items related by title, author, creator and subject.
-
Wei, J.; Hu, Y.; Liang, Y.; Kong, B.; Zhang, J.; Song, J.; Bao, Q.; Simon, G.; Jiang, San Ping; Wang, H. (2015)A zeolitic-imidazolate-framework (ZIF) nanocrystal layer-protected carbonization route is developed to prepare N-doped nanoporous carbon/graphene nano-sandwiches. The ZIF/graphene oxide/ZIF sandwich-like structure with ...
-
Duan, X.; O'Donnell, Kane; Sun, Hongqi; Wang, Yuxian; Wang, Shaobin (2015)Sulfur and nitrogen co-doped reduced graphene oxide (rGO) is synthesized bya facile method and demonstrated remarkably enhanced activities in metal-free activation of peroxymonosulfate (PMS) for catalytic oxidation of ...
-
Liang, P.; Zhang, C.; Duan, Xiaoguang; Sun, Hongqi; Liu, Shaomin; Tade, Moses; Wang, Shaobin (2017)© 2017 American Chemical Society.N-doped graphene has been considered as a promising catalyst with surface metal-free active sites for environmental remediation. Several MIL-100 (Fe)-templated N-doped graphene samples ...