Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    CFD simulation of solid-liquid stirred tanks for low to dense solid loading systems

    241363_241363.pdf (1.804Mb)
    Access Status
    Open access
    Authors
    Wadnerkar, Divyamaan
    Tade, Moses
    Pareek, Vishnu
    Utikar, Ranjeet
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wadnerkar, D. and Tade, M. and Pareek, V. and Utikar, R. 2015. CFD simulation of solid-liquid stirred tanks for low to dense solid loading systems. Particuology. 29: pp. 16-23.
    Source Title
    Particuology
    DOI
    10.1016/j.partic.2016.01.012
    ISSN
    1674-2001
    Faculty
    Faculty of Science and Engineering
    URI
    http://hdl.handle.net/20.500.11937/30135
    Collection
    • Curtin Research Publications
    Abstract

    The hydrodynamics of suspension of solids in liquids are critical to the design and performance of stirred tanks as mixing systems. Modelling a multiphase stirred tank at a high solids concentration is complex owing to particle-particle and particle-wall interactions which are generally neglected at low concentrations. Most models do not consider such interactions and deviate significantly from experimental data. Furthermore, drag force, turbulence and turbulent dispersion play a crucial role and need to be precisely known in predicting local hydrodynamics. Therefore, critical factors such as the modelling approach, drag, dispersion, coefficient of restitution and turbulence are examined and discussed exhaustively in this paper. The Euler-Euler approach with kinetic theory of granular flow, Syamlal-O'Brien drag model and Reynolds stress turbulence model provide realistic predictions for such systems. The contribution of the turbulent dispersion force in improving the prediction is marginal but cannot be neglected at low solids volume fractions. Inferences drawn from the study and the finalised models will be instrumental in accurately simulating the solids suspension in stirred tanks for a wide range of conditions. These models can be used in simulations to obtain precise results needed for an in-depth understanding of hydrodynamics in stirred tanks.

    Related items

    Showing items related by title, author, creator and subject.

    • CFD simulation of solid–liquid stirred tanks
      Wadnerkar, Divyamaan; Utikar, Ranjeet; Tade, Moses; Pareek, Vishnu (2012)
      Solid liquid stirred tanks are commonly used in the minerals industry for operations like concentration, leaching, adsorption, effluent treatment, etc. Computational Fluid Dynamics (CFD) is increasingly being used to ...
    • Simulation of solid-liquid flow in stirred tanks at high solid loading
      Wadnerkar, Divyamaan; Utikar, Ranjeet; Tade, Moses; Pareek, Vishnu (2012)
      Solid liquid stirred tanks are commonly used in mineral industry for operations like concentration, leaching, adsorption, effluent treatment, etc. Hydrodynamic study is necessary to evaluate the performance of such systems. ...
    • CFD modelling of flow and solids distribution in carbon-in-leach tanks
      Wadnerkar, Divyamaan; Pareek, V.; Utikar, R. (2015)
      The Carbon-in-Leach (CIL) circuit plays an important role in the economics of a gold refinery. The circuit uses multiphase stirred tanks in series, in which problems such as dead zones, short-circuiting, and presence of ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.