Show simple item record

dc.contributor.authorSun, D.
dc.contributor.authorSun, Jie
dc.date.accessioned2017-01-30T13:19:08Z
dc.date.available2017-01-30T13:19:08Z
dc.date.created2014-09-02T20:01:17Z
dc.date.issued2008
dc.identifier.citationSun, D. and Sun, J. 2008. Löwner’s Operator and Spectral Functions in Euclidean Jordan Algebras. Mathematics of Operations Research. 33: pp. 421-445.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/30342
dc.identifier.doi10.1287/moor.1070.0300
dc.description.abstract

We study analyticity, differentiability, and semismoothness of Löwner’s operator and spectral functions under the framework of Euclidean Jordan algebras. In particular, we show that many optimization-related classical results in the symmetric matrix space can be generalized within this framework. For example, the metric projection operator over any symmetric cone defined in a Euclidean Jordan algebra is shown to be strongly semismooth. The research also raises several open questions, whose solution would be of general interest for optimization.

dc.publisherInstitute for Operations Research and the Management Sciences (I N F O R M S)
dc.titleLöwner’s Operator and Spectral Functions in Euclidean Jordan Algebras
dc.typeJournal Article
dcterms.source.volume33
dcterms.source.startPage421
dcterms.source.endPage445
dcterms.source.issn0364-765X
dcterms.source.titleMathematics of Operations Research
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record