Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Structural and kinetic investigation of the hydride composite Ca(BH4)2 + MgH2 system doped with NbF5 for solid-state hydrogen storage

    235710_235710.pdf (4.151Mb)
    Access Status
    Open access
    Authors
    Karimi, F.
    Klaus Pranzas, P.
    Pistidda, C.
    Puszkiel, J.
    Milanese, C.
    Vainio, U.
    Paskevicius, M.
    Emmler, T.
    Santoru, A.
    Utke, R.
    Tolkiehn, M.
    Minella, C.
    Chaudhary, A.
    Boerries, S.
    Buckley, Craig
    Enzo, S.
    Schreyer, A.
    Klassen, T.
    Dornheim, M.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Karimi, F. and Klaus Pranzas, P. and Pistidda, C. and Puszkiel, J. and Milanese, C. and Vainio, U. and Paskevicius, M. et al. 2015. Structural and kinetic investigation of the hydride composite Ca(BH4)2 + MgH2 system doped with NbF5 for solid-state hydrogen storage. Physical Chemistry Chemical Physics. 17 (41): pp. 27328-27342.
    Source Title
    Physical Chemistry Chemical Physics
    DOI
    10.1039/c5cp03557k
    ISSN
    1463-9076
    School
    Department of Physics and Astronomy
    Remarks

    This open access article is distributed under the Creative Commons license http://creativecommons.org/licenses/by/3.0/

    URI
    http://hdl.handle.net/20.500.11937/30710
    Collection
    • Curtin Research Publications
    Abstract

    Designing safe, compact and high capacity hydrogen storage systems is the key step towards introducing a pollutant free hydrogen technology into a broad field of applications. Due to the chemical bonds of hydrogen–metal atoms, metal hydrides provide high energy density in safe hydrogen storage media. Reactive hydride composites (RHCs) are a promising class of high capacity solid state hydrogen storage systems. Ca(BH4)2 + MgH2 with a hydrogen content of 8.4 wt% is one of the most promising members of the RHCs. However, its relatively high desorption temperature of ∼350 °C is a major drawback to meeting the requirements for practical application. In this work, by using NbF5 as an additive, the dehydrogenation temperature of this RHC was significantly decreased. To elucidate the role of NbF5 in enhancing the desorption properties of the Ca(BH4)2 + MgH2 (Ca-RHC), a comprehensive investigation was carried out via manometric measurements, mass spectrometry, Differential Scanning Calorimetry (DSC), in situ Synchrotron Radiation-Powder X-ray Diffraction (SR-PXD), X-ray Absorption Spectroscopy (XAS), Anomalous Small-Angle X-ray Scattering (ASAXS), Scanning and Transmission Electron Microscopy (SEM, TEM) and Nuclear Magnetic Resonance (NMR) techniques.

    Related items

    Showing items related by title, author, creator and subject.

    • Hydrogen storage studies of mesoporous and titanium based materials
      Sheppard, Drew A (2008)
      Concerns over green house gas emissions and their climate change effects have lead to a concerted effort into environmental friendly technologies. One such emphasis has been on the implementation of the hydrogen economy. ...
    • Storage of Hydrogen at 303 K in Graphite Slitlike Pores from Grand Canonical Monte Carlo Simulation
      Kowalczyk, Poitr; Tanaka, H.; Holyst, R.; Kaneko, K.; Ohmori, T.; Miyamoto, J. (2005)
      Grand canonical Monte Carlo (GCMC) simulations were used for the modeling of the hydrogen adsorption in idealized graphite slitlike pores. In all simulations, quantum effects were included through the Feynman and Hibbs ...
    • Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives
      Bellosta von Colbe, J.; Ares, J.R.; Barale, J.; Baricco, M.; Buckley, Craig ; Capurso, G.; Gallandat, N.; Grant, D.M.; Guzik, M.N.; Jacob, I.; Jensen, E.H.; Jensen, T.; Jepsen, J.; Klassen, T.; Lototskyy, M.V.; Manickam, K.; Montone, A.; Puszkiel, J.; Sartori, S.; Sheppard, Drew ; Stuart, A.; Walker, G.; Webb, C.J.; Yang, H.; Yartys, V.; Züttel, A.; Dornheim, M. (2019)
      Metal hydrides are known as a potential efficient, low-risk option for high-density hydrogen storage since the late 1970s. In this paper, the present status and the future perspectives of the use of metal hydrides for ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.