Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Towards a unified theory of GNSS ambiguity resolution

    186122_186122.pdf (229.2Kb)
    Access Status
    Open access
    Authors
    Teunissen, Peter
    Date
    2003
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Teunissen, Peter. 2003. Towards a unified theory of GNSS ambiguity resolution. Journal of Global Positioning Systems. 2 (1): pp. 1-12.
    Source Title
    Journal of Global Positioning Systems
    ISSN
    1446-3156
    URI
    http://hdl.handle.net/20.500.11937/30743
    Collection
    • Curtin Research Publications
    Abstract

    Abstract. In this invited contribution a brief review will be presented of the integer estimation theory as developed by the author over the last decade and which started with the introduction of the LAMBDA method in 1993. The review discusses three different, but closely related classes of ambiguity estimators. They are the integer estimators, the integer aperture estimators and the integer equivarian-testimators. Integer estimators are integer aperture estimators and integer aperture estimators are integer equivariant estimators. The reverse is not necessarily true however. Thus of the three types of estimators the integer estimators are the most restrictive. Their pull-in regions are translational invariant, disjunct and they cover the ambiguity space completely. Well-known examples are integerrounding, integer bootstrapping and integer least-squares. A less restrictive class of estimators is the class of integer aperture estimators. Their pull-in regions only obey two of the three conditions. They are still translational invariant and disjunct, but they do not need to cover the ambiguity space completely. As a consequence the integer aperture estimators are of a hybrid nature having either integer or non-integer outcomes. Examples of integer aperture estimators are the ratio-testimator and the difference-testimator. The class of integer equivariant estimators is the less restrictive of the three classes. These estimators only obey one of the three conditions, namely the condition of being translational invariant. As a consequence the outcomes of integer equivariant estimators are always realvalued. For each of the three classes of estimators we also present the optimal estimator. Although the Gaussian case is usually assumed, the results are presented for an arbitrary probability density function of the float solution. The optimal integer estimator in the Gaussian case is the integerleast-squares estimator.The optimality criterion used is that of maximizing the probability of correct integer estimation, the so-called success rate. The optimal integer aperture estimator in the Gaussian case is the one which only returns the integer least-squares solution when the integer least-squares residual resides in the optimal aperture pull-in region. This region is governed by the probability density function of the float solution and by the probability density function of the integer least-squares residual. The aperture of the pull-in region is governed by a user defined aperture parameter. The optimality criterion used is that of maximizing the probability of correct integer estimation given a fixed, user-defined, probability of incorrect integer estimation. The optimal integer aperture estimator becomes identical to the optimal integer estimator in case the success rate and the fail rate sum up to one.The best integer equivariant estimator is an infinite weighted sum of all integers. The weights are determined as ratios of the probability density function of the float solution with its train of integer shifted copies. The optimality criterion used is that of minimizing the mean squared error. The best integer equivariant estimator therefore always out performs the float solution in terms of precision.

    Related items

    Showing items related by title, author, creator and subject.

    • A new classs of GNSS ambiguity estimators.
      Teunissen, Peter (2002)
      In Teunissen (1999) we introduced the class of admissible integer estimators. Members from this class are defined by their so-called pull-in regions. These pull-in regions satisfy the following three conditions. They are ...
    • Integer aperture GNSS ambiguity resolution
      Teunissen, Peter (2003)
      GNSS carrier phase ambiguity resolution is the key to fast and high-precision satellite positioning and navigation. It applies to a great variety of current and future models of GPS, modernized GPS and Galileo. In (Teunissen, ...
    • Theory of carrier phase ambiguity resolution
      Teunissen, Peter (2003)
      Carrier phase ambiguity resolution is the key to high precision Global Navigation Satellite System (GNSS) positioning and navigation. It applies to a great variety of current and future models of GPS, modernized GPS and ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.