Show simple item record

dc.contributor.authorYu, K.
dc.contributor.authorLu, Zudi
dc.date.accessioned2017-01-30T13:21:30Z
dc.date.available2017-01-30T13:21:30Z
dc.date.created2010-03-29T20:05:02Z
dc.date.issued2004
dc.identifier.citationYu, Keming and Lu, Zudi. 2004. Local linear additive quantile regression. Scandinavian Journal of Statistics. 31 (3): pp. 333-346.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/30782
dc.identifier.doi10.1111/j.1467-9469.2004.03_035.x
dc.description.abstract

We consider non-parametric additive quantile regression estimation by kernel-weighted local linear fitting. The estimator is based on localizing the characterization of quantile regression as the minimizer of the appropriate 'check function'. A backfitting algorithm and aheuristic rule for selecting the smoothing parameter are explored. We also study the estimation of average-derivative quantile regression under the additive model. The techniques are illustrated by a simulated example and a real data set.

dc.publisherBlackwell Publishing Ltd
dc.subjectquantile regression
dc.subjectadditive models
dc.subjectaverage derivative
dc.subjectlocal linear fitting
dc.subjectbandwidth selection
dc.subjectbackfitting algorithm
dc.titleLocal linear additive quantile regression
dc.typeJournal Article
dcterms.source.volume31
dcterms.source.number3
dcterms.source.startPage333
dcterms.source.endPage346
dcterms.source.issn0303-6898
dcterms.source.titleScandinavian Journal of Statistics
curtin.accessStatusFulltext not available
curtin.facultySchool of Science and Computing
curtin.facultyDepartment of Mathematics and Statistics
curtin.facultyFaculty of Science and Engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record