Reactive Power/Voltage Control for Unbalanced Distribution System Using Genetic Algorithms
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
Source Conference
School
Collection
Abstract
The unbalanced conditions are taken into account in the Reactive Power/Voltage control of distribution system. The aim of the control is to simultaneously minimize energy loss and improve voltage profile. The control is carried out by optimal dispatch of load tap changers (LTC) and shunt capacitors considering unbalanced conditions. A genetic algorithm (GA) is developed to determine the load curve partition for effective LTC scheduling and switching constraint satisfaction. GA is also appointed to determine the optimal dispatch schedule of the devices and to check the fulfillment of switching constraints prior to performing calculations. For power flow analyses under unbalanced conditions, a forward/backward propagation algorithm is developed. The optimization is implemented on the IEEE 34-bus unbalanced distribution system, and the presented system improvements are highlighted. The main contribution is inclusion of unbalanced system conditions into the optimal dispatch problem considering different daily load curves for the three phases of distribution system.
Related items
Showing items related by title, author, creator and subject.
-
Juanuwattanakul, Parachai (2012)Voltage instabilities and subsequent system collapses are considered as growing concerns in modern multiphase distribution networks as they are progressively forced to operate closer to their stability limits due to many ...
-
Deilami, Sara (2010)This thesis investigates the performances of a class of intelligent system algorithms in solving the volt/VAr/THD control problem for large distribution systems. For this purpose, optimal dispatch of Load Tap Changers ...
-
Su, Xiangjing; Masoum, Mohammad Sherkat; Wolfs, P. (2014)The continuous expansion of consumer-driven installations of residential rooftop photovoltaic (PV) systems causes serious power quality, notable voltage variations and unbalance, which limit the number and capacity of the ...