Earth's oldest mantle fabrics indicate Eoarchaean subduction
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
School
Remarks
This open access article is distributed under the Creative Commons license http://creativecommons.org/licenses/by/4.0/
Collection
Abstract
The extension of subduction processes into the Eoarchaean era (4.0-3.6 Ga) is controversial. The oldest reported terrestrial olivine, from two dunite lenses within the ~3,720 Ma Isua supracrustal belt in Greenland, record a shape-preferred orientation of olivine crystals defining a weak foliation and a well-defined lattice-preferred orientation (LPO). [001] parallel to the maximum finite elongation direction and (010) perpendicular to the foliation plane define a B-type LPO. In the modern Earth such fabrics are associated with deformation of mantle rocks in the hanging wall of subduction systems; an interpretation supported by experiments. Here we show that the presence of B-type fabrics in the studied Isua dunites is consistent with a mantle origin and a supra-subduction mantle wedge setting, the latter supported by compositional data from nearby mafic rocks. Our results provide independent microstructural data consistent with the operation of Eoarchaean subduction and indicate that microstructural analyses of ancient ultramafic rocks provide a valuable record of Archaean geodynamics.
Related items
Showing items related by title, author, creator and subject.
-
Evans, Katy (2012)Elements that can occur in more than one valence state, such as Fe, C and S, play an important role in Earth's systems at all levels, and can drive planetary evolution as they cycle through the various geochemical reservoirs. ...
-
Evans, Katy; Reddy, Steven; Tomkins, A.; Crossley, Rosalind; Frost, B. (2017)Magnetite breakdown during subduction of serpentinised ultramafic rocks may produce oxidised fluids that oxidise the deep Earth and/or the sub-arc mantle, either via direct transport of ferric iron, or via redox reactions ...
-
Crossley, R.J.; Evans, Katy ; Evans, Noreen ; Bragagni, A.; McDonald, B.J.; Reddy, Steven ; Speelmanns, I.M. (2020)The highly siderophile elements (HSE) include the economically critical platinum group elements (PGE; Os, Ir, Ru, Rh, Pt, Pd, Au and Re), gold and rhenium. The HSE are redox sensitive in mantle and seafloor environments ...