Ridge Regression for Two Dimensional Locality Preserving Projection
Access Status
Authors
Date
2008Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISBN
School
Collection
Abstract
Two Dimensional Locality Preserving Projection (2D-LPP) is a recent extension of LPP, a popular face recognition algorithm. It has been shown that 2D-LPP performs better than PCA, 2D-PCA and LPP. However, the computational cost of 2D-LPP is high. This paper proposes a novel algorithm called Ridge Regression for Two Dimensional Locality Preserving Projection (RR-2DLPP), which is an extension of 2D-LPP with the use of ridge regression. RR-2DLPP is comparable to 2D-LPP in performance whilst having a lower computational cost. The experimental results on three benchmark face data sets - the ORL, Yale and FERET databases - demonstrate the effectiveness and efficiency of RR-2DLPP compared with other face recognition algorithms such as PCA, LPP, SR, 2D-PCA and 2D-LPP.