Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Taking the temperature of Earth’s hottest crust

    Access Status
    Fulltext not available
    Authors
    Korhonen, Fawna
    Clark, Christopher
    Brown, M.
    Taylor, Richard
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Korhonen, F. and Clark, C. and Brown, M. and Taylor, R. 2014. Taking the temperature of Earth’s hottest crust. Earth and Planetary Science Letters. 408: pp. 341-354.
    Source Title
    Earth and Planetary Science Letters
    DOI
    10.1016/j.epsl.2014.10.028
    ISSN
    0012-821X
    School
    Department of Applied Geology
    URI
    http://hdl.handle.net/20.500.11937/31162
    Collection
    • Curtin Research Publications
    Abstract

    The limitations of conventional thermobarometry and petrogenetic grids for determining the peak P–T conditions of granulites are well known. These limitations have been overcome during the past decade with the calibration of single mineral thermometers, particularly Al-in-orthopyroxene, Zr-in-rutile and Ti-in-zircon, and the increased use of P–T pseudosection thermobarometry. Most recent studies of ultrahigh temperature (UHT) granulites (those formed at >900°C) have used one or other of these methods to argue for peak metamorphic temperatures up to or beyond 1000°C. Since models for the thermal evolution of orogens generally do not predict such extreme temperatures it is important to confirm their veracity. Here we combine in a single study single mineral thermometry with P–T pseudosection thermobarometry to provide a robust determination of peak temperature and tight constraints on the retrograde P–T path for one UHT granulite locality in the Eastern Ghats Province. This is the first study to apply the most recent update of the internally consistent thermodynamic dataset of Holland and Powell (2011) and the re-parameterized a–x models of White et al. (2014) and Wheller and Powell (2014) to UHT granulites. For two samples, we report Zr-in-rutile temperatures of >1000°C and Ti-in-zircon temperatures of ~900°C, supported by Al-in-orthopyroxene temperatures of ~900?C, that correspond closely to those estimated using P–T pseudosections for conditions at the thermal peak and at the solidus on the retrograde P–T path, respectively. The P–T path is counter-clockwise in common with other UHT granulite localities in the Eastern Ghats Province. By demonstrating that UHT metamorphism at T >1000°C is real we provide a robust constraint that must be met by geodynamic models for the development of ultrahot orogens.

    Related items

    Showing items related by title, author, creator and subject.

    • Testing the fidelity of thermometers at ultrahigh temperatures
      Clark, Chris ; Taylor, Richard ; Johnson, Tim ; Harley, S.L.; Fitzsimons, Ian ; Oliver, Liam (2019)
      A highly residual granulite facies rock (sample RG07-21) from Lunnyj Island in the Rauer Group, East Antarctica, presents an opportunity to compare different approaches to constraining peak temperature in high-grade ...
    • Neoproterozoic evolution and Cambrian reworking of ultrahigh temperature granulites in the Eastern Ghats Province, India
      Mitchell, R.; Johnson, Tim; Clark, Christopher; Gupta, S.; Brown, M.; Harley, S.; Taylor, Richard (2018)
      The time-scales and P–T conditions recorded by granulite facies metamorphic rocks permit inferences about the geodynamic regime in which they formed. Two compositionally heterogeneous cordierite–spinel-bearing granulites ...
    • Accessories after the facts: Constraining the timing, duration and conditions of high-temperature metamorphic processes
      Taylor, R.; Kirkland, Chris; Clark, Christopher (2016)
      © 2016 Elsevier B.V. High-temperature metamorphic rocks are the result of numerous chemical and physical processes that occur during a potentially long-lived thermal evolution. These rocks chart the sequence of events ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.