Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Experimental tests of steel fibre reinforced concrete beams under drop-weight impacts

    Access Status
    Fulltext not available
    Authors
    Hao, Y.
    Hao, Hong
    Chen, G.
    Date
    2015
    Type
    Conference Paper
    
    Metadata
    Show full item record
    Citation
    Hao, Y. and Hao, H. and Chen, G. 2015. Experimental tests of steel fibre reinforced concrete beams under drop-weight impacts. Key Engineering Materials. 626: pp. 311-316.
    Source Title
    Key Engineering Materials
    DOI
    10.4028/www.scientific.net/KEM.626.311
    ISBN
    9783038352266
    School
    Department of Civil Engineering
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP130104332
    URI
    http://hdl.handle.net/20.500.11937/31273
    Collection
    • Curtin Research Publications
    Abstract

    Concrete is a brittle material, especially under tension. Intensive researches have been reported to add various types of fibres into concrete mix to increase its ductility. Recently, the authors proposed a new type of steel fibre with spiral shape to reinforce concrete material. Laboratory tests on concrete cylinder specimens demonstrated that compared to other fibre types such as the hooked-end, deformed and corrugated fibres the new fibres have larger displacement capacity and provide better bonding with the concrete. This study performs drop-weight impact tests to investigate the behaviour of concrete beams reinforced by different types of steel fibres. The quasi-static compressive and split tensile tests were also conducted to obtain the static properties of plain concrete and steel fibre reinforced concrete (FRC) materials. The quasi-static tests were carried out using hydraulic testing machine and the impact tests were conducted using an instrumented drop-weight testing system. Plain concrete and concrete reinforced by the commonly used hooked-end steel fibres and the proposed spiral-shaped steel fibres were tested in this study. The volume dosage of 1% fibre was used to prepare all FRC specimens. Repeated drop-weight impacts were applied to the beam specimens until total collapse. A 15.2 kg hard steel was used as the drop-weight impactor. A drop height of 0.5 m was considered in performing the impact tests. The force-displacement relations and the energy absorption capabilities of plain concrete and FRC beams were obtained, compared and discussed. The advantage and effectiveness of the newly proposed spiral-shaped steel fibres in increasing the performance of FRC beam elements under impact loads were examined.

    Related items

    Showing items related by title, author, creator and subject.

    • Experimental investigation of the behaviour of spiral steel fibre reinforced concrete beams subjected to drop-weight impact loads
      Hao, Y.; Hao, Hong; Chen, G. (2014)
      Concrete is a brittle material with much lower strength in tension as compared to that in compression. Adding fibres into concrete mix has been intensively investigated to increase the ductility, the crack control and ...
    • Influence of drop weight geometry and interlayer on impact behavior of RC beams
      Li, H.; Chen, Wensu ; Hao, Hong (2019)
      © 2019 Elsevier Ltd A number of drop weight tests on reinforced concrete (RC) beams have been reported in literature. These tests conducted by different researchers used drop weight of different geometries. Some researchers ...
    • Test analysis on spiral steel fiber reinforced concrete subjected to impact loads
      Hao, Yifei; Hao, Hong (2016)
      Many studies have demonstrated that adding steel fibers to concrete mixture is able to markedly increase the ductility and tensile strength and thus enhance the resistance of concrete structures against blast and impact ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.