Glycerol monoalkanediol diethers: A novel series of archaeal lipids detected in hydrothermal environments
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
DOI
ISSN
School
Collection
Abstract
Rationale: Recent advances in analytical techniques used to study archaeal membrane lipids have led to the identification of several novel di- and tetraether lipid structures. Here, we report the presence of a previously unknown series of archaeal diethers that have been detected exclusively in hydrothermally affected environments. Methods: Polar lipid extracts were analyzed using high-performance liquid chromatography coupled to positive ion atmospheric pressure chemical ionization mass spectrometry (HPLC/APCI-MS). Identification of the novel archaeal diethers was achieved using a triple quadrupole mass spectrometer operated in MS/MS mode and by comparison of characteristic retention time patterns. Results: Modern and fossil sediments deposited under hydrothermal conditions contained variable abundances of archaeal lipids including archaeol, glycerol trialkyl glycerol tetraether (GTGT-0), isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs), glycerol monoalkyl glycerol tetraethers (GMGTs) and glycerol dialkanol diethers (GDDs). In addition to these well-established archaeal lipids, we detected a novel series of archaeal diethers (i.e., glycerol monoalkanediol diethers (GMDs)) that are structurally related to GMGTs but which lack one terminal glycerol moiety and contain 0–2 cyclopentyl ring systems. Conclusions: The unique presence of GMDs in hydrothermally affected environments suggests that these compounds may constitute an exclusive and yet unknown component of the cell wall membrane of (hyper)thermophilic Archaea. The presented mass spectral characteristics will facilitate detection of these components in pure cultures of Archaea and natural environments.
Related items
Showing items related by title, author, creator and subject.
-
Lengger, Sabine; Lipsewers, Y.; De Haas, H.; Damste, J.; Schouten, S. (2014)Thaumarchaeota are amongst the most abundant microorganisms in aquatic environments, however, their metabolism in marine sediments is still debated. Labeling studies in marine sediments have previously been undertaken, ...
-
Lengger, Sabine; Hopmans, E.; Sinninghe Damste, J.; Schouten, S. (2014)Glycerol dibiphytanyl glycerol tetraether (GDGT) lipids are part of the cellular membranes of Thaumarchaeota, an archaeal phylum composed of aerobic ammonia oxidizers, and are used in the paleotemperature proxy TEX86. ...
-
Lengger, Sabine; Hopmans, E.; Reichart, G.; Nierop, K.; Damste, J.; Schouten, S. (2012)The TEX86 is a proxy based on a ratio of pelagic archaeal glycerol dibiphytanyl glycerol tetraether lipids (GDGTs), and used for estimating past sea water temperatures. Concerns exist that in situ production of GDGTs ...