Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Amine functionalized Multi-walled carbon nanotubes (F-MWCNTs)/polyethersulfone (PES) membranes were prepared using phase inversion induced by immersion precipitation. Crude MWCNTs were chemically treated using strong acids (H2SO4/HNO3) and 1,3-phenylenediamine (mPDA) to produce the functional amine groups (single bondNH2) on their surfaces. F-MWCNTs with different concentration were blended in the casting solution containing PES, polyvinylpyrrolidone (PVP) and dimethylacetamide (DMAC). Pure water was used as non-solvent. The FTIR spectra indicated that the amine functional groups were produced on the surface of MWCNTs. The membranes prepared with different concentrations of F-MWCNTs were characterized using contact angle, field emission scanning electron microscopy (FESEM), scanning electron microscopy (SEM), atomic force microscopy (AFM) and permeation tests. The surface hydrophilicity of membranes was significantly improved by addition of F-MWCNTs in the casting solution. An increment in the porosity, pore size and surface roughness of the membranes was observed by increasing F-MWCNTs content up to 1 wt.%. Further addition of F-MWCNTs caused a reduction in porosity and roughness of formed membrane. The membranes prepared with 0.5 and 1 wt.% of F-MWCNTs showed higher performance than neat membrane. Addition of F-MWCNTs in the casting solution improved the BSA rejection and antifouling properties of PES membrane.
Related items
Showing items related by title, author, creator and subject.
-
Jun, L.; Mujawar, Mubarak; Yon, L.; Bing, C.; Khalid, M.; Abdullah, E. (2018)© 2018 Elsevier Ltd. Multi-walled carbon nanotubes (MWCNTs) have a great potential in wide applications due to their extraordinary physical, thermal and mechanical properties. However, the known shortcomings, such as ...
-
Wang, D.; Lu, S.; Kulesza, P.; Chang, M.L.; De Marco, Roland; Jiang, San Ping (2011)Both Keggin-type phosphotungstic acid (HPW) and Pd are not prominent catalysts towards the oxygen reduction (ORR), but their composite Pd-HPW catalyst produces a significantly higher electrochemical activity for the ORR ...
-
Mahenthiran, Ashvin Viknesh; Jawad, Zeinab Abbas; Chin, Bridgid (2022)The carbon dioxide (CO2) separation technology has become a focus recently, and a developed example is the membrane technology. It is an alternative form of enhanced gas separation performance above the Robeson upper bound ...