Show simple item record

dc.contributor.authorZhang, X.
dc.contributor.authorWang, L.
dc.contributor.authorSun, Qian
dc.date.accessioned2017-01-30T13:25:17Z
dc.date.available2017-01-30T13:25:17Z
dc.date.created2014-05-14T20:00:35Z
dc.date.issued2014
dc.identifier.citationZhang, X. and Wang, L. and Sun, Q. 2014. Existence of positive solutions for a class of nonlinear fractional differential equations with integral boundary conditions and a parameter. Applied Mathematics and Computations. 226: pp. 708-718.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/31431
dc.identifier.doi10.1016/j.amc.2013.10.089
dc.description.abstract

In this paper, we study the existence of positive solutions for the following nonlinear fractional differential equations with integral boundary conditions: D0α+u(t) +h(t)f(t,u(t)) = 0, 0<t<1, u(0) = u′(0) = u″(0) = 0, u(1) = λ∫0ηu(s)ds, where 3 < α ≤ 4,0 < η ≤ 1, 0 -< ληαα <1, D0+α is the standard Riemann–Liouville derivative. h(t) is allowed to be singular at t=0 and t=1. By using the properties of the Green function, u0-bounded function and the fixed point index theory under some conditions concerning the first eigenvalue with respect to the relevant linear operator, we obtain some existence results of positive solution.

dc.publisherElsevier Inc.
dc.subjectPositive solution
dc.subjectFixed point theorem
dc.subjectGreen’s function
dc.subjectIntegral boundary conditions
dc.subjectFractional differential equation
dc.titleExistence of positive solutions for a class of nonlinear fractional differential equations with integral boundary conditions and a parameter
dc.typeJournal Article
dcterms.source.volume226
dcterms.source.startPage708
dcterms.source.endPage718
dcterms.source.issn0096-3003
dcterms.source.titleApplied Mathematics and Computations
curtin.department
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record