Analysis of multicomponent polynomial phase signals
Access Status
Authors
Date
2007Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
Remarks
Copyright © 2007 IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Collection
Abstract
While the theory of estimation of monocomponent polynomial phase signals is well established, the theoretical and methodical treatment of multicomponent polynomial phase signals (mc-PPSs) is limited. In this paper, we investigate several aspects of parameter estimation for mc-PPSs and derive the Crameacuter-Rao bound. We show the limits of existing techniques and then propose a nonlinear least squares (NLS) approach. We also motivate the use the Nelder-Mead simplex algorithm for minimizing the nonlinear cost function. The slight increase in computational complexity is a tradeoff for improved mean square error performance, which is evidenced by simulation results.