Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The persistence and germination of fern spores in fire-prone, semi-arid environments

    Access Status
    Fulltext not available
    Authors
    Paul, S.
    Dixon, Kingsley
    Miller, Ben
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Paul, S. and Dixon, K. and Miller, B. 2014. The persistence and germination of fern spores in fire-prone, semi-arid environments. Australian Journal of Botany. 62 (6): pp. 518-527.
    Source Title
    Australian Journal of Botany
    DOI
    10.1071/BT14193
    ISSN
    00671924
    URI
    http://hdl.handle.net/20.500.11937/31862
    Collection
    • Curtin Research Publications
    Abstract

    In addition to population regeneration, the spore phase provides ferns with a capacity for dispersal through space and time (if spores are able to survive for long periods), and buffers their populations against environmental extremes. Inhabiting dry and fire-prone environments provides specific challenges to ferns, and the traits of fern spores in relation to these challenges are not well understood. Their shallow, dense and fibrous root networks mean that the loss or establishment of fern populations in disturbed ecosystems may influence soil stability, and indicate a keystone role in ecosystem function and ecological restoration. Here, we examine the requirements for, and limits of, spore persistence and germination of three Cheilanthes Syn.Fil. (Pteridaceae) species, namely, optimal conditions for spore germination and prothallial growth, sensitivity to temperature extremes and spore longevity. Viability of fresh spores was assessed following exposure to temperature extremes (-20 to 250°C) or after incubation at a range of temperatures (10-35°C) and in light or dark conditions. Viability of spores from herbarium voucher specimens was also assessed, covering 3-65 years of storage. Maximal germination occurred among spores incubated between 20°C and 30°C in light. Further temperature variation within this range resulted in a ×10 difference in prothallial size. Germination was unaffected by 10min of exposure to temperatures up to 100°C, but was reduced after exposure to temperatures of -20°C and 110°C. Germination of herbarium-stored spores demonstrated longevity of up to 15 years. This longevity, combined with high spore density in field soils (including at depth to at least 10cm), very high germination under ideal conditions, and microscopic size, describes a disturbance-mediated propagule persistence strategy. Spores are non-persisting and will germinate if exposed to light and water, but do persist if buried. Germinable spore can be found 5cm below the soil surface, and can persist for at least 15 years, but the light requirement for germination means that persistent spores can achieve germination only if exhumed. Elucidating these traits reveals a unique pathway for plant persistence, and contributes to the development of the restoration capacity of arid-environment ferns.

    Related items

    Showing items related by title, author, creator and subject.

    • Germination responses of four native terrestrial orchids from south-west Western Australia to temperature and light treatments
      Nikabadi, S.; Bunn, E.; Stevens, J.; Newman, B.; Turner, Shane; Dixon, Kingsley (2014)
      We report an investigation into the impact of temperature and illumination on in vitro symbiotic and asymbiotic germination of the threatened taxon Caladenia huegelii, and three other orchid spp. namely—Caladenia latifolia, ...
    • Seed-dormancy depth is partitioned more strongly among habitats than among species in tropical ephemerals
      Cross, Adam; Barrett, M.; Turner, S.; Dixon, Kingsley; Merritt, D. (2018)
      Seed biology in the annual herbaceous flora of ecologically stressful, seasonally wet habitats remains largely unexplored. Temporal and spatial species turnover among these habitats is often high, yet little is known about ...
    • Seed dormancy and persistent sediment seed banks of ephemeral freshwater rock pools in the Australian monsoon tropics
      Cross, A.; Turner, S.; Renton, M.; Baskin, J.; Dixon, Kingsley; Merritt, D. (2015)
      Background and Aims: Rock pools are small, geologically stable freshwater ecosystems that are both hydrologically and biologically isolated. They harbour high levels of plant endemism and experience environmental ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.