Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Removal of Various Pollutants from Leachate Using a Low-Cost Technique: Integration of Electrolysis with Activated Carbon Contactor

    Access Status
    Fulltext not available
    Authors
    Ahsan, A.
    Kamaludin, M.
    Rahman, M.
    Anwar, Faisal
    Bek, M.
    Idrus, S.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Ahsan, A. and Kamaludin, M. and Rahman, M. and Anwar, F. and Bek, M. and Idrus, S. 2014. Removal of Various Pollutants from Leachate Using a Low-Cost Technique: Integration of Electrolysis with Activated Carbon Contactor. Water Air and Soil Pollution. 225 (12): pp. 1-9, 2163.
    Source Title
    Water Air and Soil Pollution
    DOI
    10.1007/s11270-014-2163-y
    ISSN
    0049-6979
    School
    Department of Civil Engineering
    URI
    http://hdl.handle.net/20.500.11937/3195
    Collection
    • Curtin Research Publications
    Abstract

    Landfill leachate contains a high concentration of organic pollutants that are active agents in water pollution. This study was conducted to remove various pollutants from landfill leachate through electrolysis and activated carbon (AC) treatments. A simple electrolytic reactor was designed to investigate the removal efficiency of these treatments for biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSSs), and total dissolved solids (TDSs) from landfill leachate at different electric current densities (CDs) and retention times (RTs). The results showed that the highest removal efficiencies for BOD and COD were 75.6 and 57 %, respectively, under a 7-V current for 4 h. It was also found that BOD, COD, TSS, and TDS removal efficiencies improved in proportion to an increase in CD and RT. However, pH gradually increased with an increase in CD and RT. A number of treated leachate samples were further polished by AC filtration to compare the effect of this additional process on the removal of color, BOD, COD, TSS, and TDS. This secondary treatment resulted in a higher removal of color and other pollutants than electrolysis alone. At 4 h RT, the BOD removal efficiency was 54.6 % at 3 V and 66.4 % at 5 V, and the efficiency increased to 61.5 and 70.5 %, respectively, after treatment by AC filtration. Under the same conditions, COD removal efficiency increased from 7.5 to 38.5 % at 3 V and from 31.1 to 49.5 % at 5 V. TSS and TDS removal efficiencies were also significantly improved by AC filtration. It is therefore concluded that 7 V of CD and 4 h of RT are the optimum parameters for removing pollutants from leachate and that the secondary treatment of AC filtration is an efficient method of further polishing.

    Related items

    Showing items related by title, author, creator and subject.

    • Prediction of pollutant leaching from landfill
      Lee, Aik Heng (2010)
      Landfill is continued to be the most common approach to solid waste disposal. On contrary, landfill practice is still common with increase in water pollution due to leaching of pollutants.Leachate generation from landfill ...
    • Size exclusion chromatography as a tool for natural organic matter characterisation in drinking water treatment
      Allpike, Bradley (2008)
      Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
    • Improvements of oil-in-water analysis for produced water using membrane filtration
      Khor, Ee Huey (2011)
      The accuracy of oil-in-water analysis for produced water is increasingly crucial as the regulations for disposal of this water are getting more stringent world wide. Currently, most of the oil producing countries has ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.