Intensity and Range Based Features for Object Detection in Mobile Mapping Data
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISSN
School
Collection
Abstract
Mobile mapping is used for asset management, change detection, surveying and dimensional analysis. There is a great desire to automate these processes given the very large amounts of data, especially when 3-D point cloud data is combined with co-registered imagery - termed “3-D images”. One approach requires low-level feature extraction from the images and point cloud data followed by pattern recognition and machine learning techniques to recognise the various high level features (or objects) in the images. This paper covers low-level feature analysis and investigates a number of different feature extraction methods for their usefulness. The features of interest include those based on the “bag of words” concept in which many low-level features are used e.g. histograms of gradients, as well as those describing the saliency (how unusual a region of the image is). These mainly image based features have been adapted to deal with 3-D images. The performance of the various features are discussed for typical mobile mapping scenarios and recommendations made as to the best features to use.
Related items
Showing items related by title, author, creator and subject.
-
Nugraheni, Fitri (2008)This thesis sets out research carried out to investigate the usefulness of a descriptive database of construction methods for safety assessment. In addition, it investigates the possibility of utilising construction images ...
-
Savitha, R.; Chan, Kit Yan; San, P.; Ling, S.; Suresh, S. (2017)© 2016 IEEE.This paper proposes a hybrid deep learning algorithm, namely, the Deep Boltzmann Functional Link Network (DBFLN) for classification problems. A Deep Boltzmann Machine (DBM) with two layers of Restricted Boltzmann ...
-
Gilani, S.; Tan, D.; Russell-Smith, S.; Maybery, M.; Mian, A.; Eastwood, Peter; Shafait, F.; Goonewardene, M.; Whitehouse, A. (2015)© 2015 Gilani et al.; licensee BioMed Central. Background: In a recent study, Bejerot et al. observed that several physical features (including faces) of individuals with an autism spectrum disorder (ASD) were more ...