Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Elastic properties and lattice dynamics of ruthenium at high pressures

    Access Status
    Open access via publisher
    Authors
    Lugovskoy, Andrey
    Belov, M.
    Vekilov, Y.
    Krasilnikov, O.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Lugovskoy, A. and Belov, M. and Vekilov, Y. and Krasilnikov, O. 2014. Elastic properties and lattice dynamics of ruthenium at high pressures. Journal of Physics: Conference Series. 490 (012059): pp. 1-5.
    Source Title
    Journal of Physics: Conference Series
    DOI
    10.1088/1742-6596/490/1/012059
    ISSN
    1742-6588
    School
    Department of Physics and Astronomy
    URI
    http://hdl.handle.net/20.500.11937/32183
    Collection
    • Curtin Research Publications
    Abstract

    The elastic properties and structural stability in ruthenium under pressure are investigated. The analysis is performed in the framework of Landau theory and nonlinear elasticity. For this purpose the definition of effective elastic constants (EC) of n-th (n=2) order characterizing elastic properties of loaded crystal and the relations between effective EC and corresponding EC of Bragger type for hcp crystals is given. The conditions of hcp lattice stability to the uniform shear strain under the pressure P are expressed in terms of the second order effective EC. The method of effective EC calculations for hcp crystals under hydrostatic pressure is presented. The equation of state and EC of second and third order and phonon dispersion relations in high-symmetry directions in the pressure range of 0-600 GPa are calculated in the framework of the density functional theory (DFT) and the density functional perturbation theory (DFPT) respectively. EC are in the good agreement with available experimental data and increase monotonically with pressure, no softening or stability condition violation are observed. Softening of phonon frequencies near the Brillion zone center is also not observed.

    Related items

    Showing items related by title, author, creator and subject.

    • Investigation of pressure and saturation effects on elastic parameters: an integrated approach to improve time-lapse interpretation
      Grochau, Marcos Hexsel (2009)
      Time-lapse seismic is a modern technology for monitoring production-induced changes in and around a hydrocarbon reservoir. Time-lapse (4D) seismic may help locate undrained areas, monitor pore fluid changes and identify ...
    • Prediction of sonic velocities in shale from porosity and clay fraction obtained from logs - A North Sea well case study
      Pervukhina, Marina; Golodoniuc, P.; Gurevich, Boris; Clennell, M.; Dewhurst, D.; Nordgård-Bolås, H. (2014)
      Prediction of sonic velocities in shales from well logs is important for seismic to log ties if the sonic log is absent for a shaly section, for pore pressure anomaly detection, and for data quality control. An anisotropic ...
    • Nanoscale elastic-plastic deformation and mechanical properties of 3C-SiC thin film using nanoindentation
      Nawaz, A.; Islam, B.; Mao, W.; Lu, Chunsheng; Shen, Y. (2018)
      The elastic-plastic deformation of 3C-SiC thin film was investigated by a nanoindenter equipped with the Berkovich tip. Transition from pure elastic to elastic-plastic deformation was evidenced at an approximate load of ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.