Mechanical properties and water absorption behaviour of recycled cellulose fibre reinforced epoxy composites
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
Recycled cellulose fibre (RCF) reinforced epoxy composites were fabricated with fibre loadings of 19, 28, 40 and 46 wt%. Results showed that flexural strength, flexural modulus, fracture toughness and impact strength increased as the fibre content increased. The ultimate mechanical properties were achieved with a fibre content of 46 wt%. The effect of water absorption on mechanical and physical properties of RCF/epoxy composites was investigated. The values of maximum water uptake and diffusion coefficient were found to increase with an increase in fibre content. Flexural strength, modulus and fracture toughness decreased as a result of moisture absorption. However, the impact strength was found to increase slightly after water absorption. XRD, FTIR and SEM studies were carried out to evaluate the composition and microstructure of RCF and RCF/epoxy composites.
Related items
Showing items related by title, author, creator and subject.
-
Alamri, Hatem Rashed (2012)In recent years, cellulose fibre-reinforced polymer composites have been gaining a great attention in several engineering applications due to their desirable properties, which include low density, low cost, renewability ...
-
Sudarisman (2009)The flexural behaviour of three different hybrid fibre-reinforced polymer (FRP) matrix composites, i.e. S2-glass/E-glass/epoxy, TR50S carbon/IM7 carbon/epoxy, and E-glass/TR50S carbon/epoxy hybrid FRP composites, has been ...
-
Alamri, Hatem; Low, It Meng (2013)Recycled cellulose fibre (RCF) reinforced epoxy/clay nanocomposites were successfully synthesized with different weight percentages (0%, 1%, 3% and 5%) of organoclay platelets (30B). The objective of this study was to ...