On robust methodologies for managing public health care systems
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
Authors focus on ontology-based multidimensional data warehousing and mining methodologies, addressing various issues on organizing, reporting and documenting diabetic cases and their associated ailments, including causalities. Map and other diagnostic data views, depicting similarity and comparison of attributes, extracted from warehouses, are used for understanding the ailments, based on gender, age, geography, food-habits and other hereditary event attributes. In addition to rigor on data mining and visualization, an added focus is on values of interpretation of data views, from processed full-bodied diagnosis, subsequent prescription and appropriate medications. The proposed methodology, is a robust back-end application, for web-based patient-doctor consultations and e-Health care management systems through which, billions of dollars spent on medical services, can be saved, in addition to improving quality of life and average life span of a person. Government health departments and agencies, private and government medical practitioners including social welfare organizations are typical users of these systems.
Related items
Showing items related by title, author, creator and subject.
-
Wright, Graeme L. (2000)The objective of this study was to investigate the application of multiscale satellite remote sensing data for assessment of land cover change in the rural-urban fringe. Inherent in this assessment process was the ...
-
Issa, Tomayess; Jadeja, B. (2018)Big data is new technology trend and it provides immense advantages. There are too many social networking websites people are using, these websites more than ever before. The data which has been created in the last 5 years ...
-
Lockery, J.E.; Collyer, T.A.; Reid, Christopher ; Ernst, M.E.; Gilbertson, D.; Hay, N.; Kirpach, B.; McNeil, J.J.; Nelson, M.R.; Orchard, S.G.; Pruksawongsin, K.; Shah, R.C.; Wolfe, R.; Woods, R.L. (2019)© 2019 The Author(s). Background: Large-scale studies risk generating inaccurate and missing data due to the complexity of data collection. Technology has the potential to improve data quality by providing operational ...