Evidence for and against a pathogenic role for reduced γ-secretase activity in familial Alzheimer’s disease
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
This open access article is distributed under the Creative Commons license http://creativecommons.org/licenses/by-nc/4.0/
Collection
Abstract
The majority of mutations causing familial Alzheimer’s disease (fAD) have been found in the gene PRESENILIN1 (PSEN1 ) with additional mutations in the related gene PRESENILIN2 (PSEN2 ). The best characterized function of PRESENILIN (PSEN) proteins is in γ-secretase enzyme activity. One substrate of γ-secretase is encoded by the gene AMYLOID BETA A4 PRECURSOR PROTEIN (A βPP/APP) that is a fAD mutation locus. AβPP is the source of the amyloid-β (Aβ) peptide enriched in the brains of people with fAD or the more common, late onset, sporadic form of AD, sAD. These observations have resulted in a focus on γ-secretase activity and Aβ as we attempt to understand the molecular basis of AD pathology. In this paper we briefly review some of the history of research on γ-secretase in AD. We then discuss the main ideas regarding the role of γ-secretase and the PSEN genes in this disease. We examine the significance of the “fAD mutation reading frame preservation rule” that applies to PSEN1 and PSEN2 (and A βPP ) and look at alternative roles for AβPP and Aβ in fAD. We present a case for an alternative interpretation of published data on the role of γ-secretase activity and fAD-associated mutations in AD pathology. Evidence supports a “PSEN holoprotein multimer hypothesis” where PSEN fAD mutations generate mutant PSEN holoproteins that multimerize with wild type holoprotein and dominantly interfere with an AD-critical function(s) such as autophagy or secretion of Aβ. Holoprotein multimerization may be required for the endoproteolysis that activates PSENs’ γ-secretase activity.
Related items
Showing items related by title, author, creator and subject.
-
Nik, S.; Newman, M.; Wilson, L.; Ebrahimie, E.; Wells, S.; Musgrave, I.; Verdile, Giuseppe; Martins, R.; Lardelli, M. (2015)The PRESENILIN1 and PRESENILIN2 genes encode structurally related proteases essential for ?-secretase activity. Of nearly 200 PRESENILIN mutations causing early onset, familial Alzheimer's disease (FAD) only the K115Efx10 ...
-
Sharman, Matthew; Moussavi Nik, Seyyed; Chen, Mengqi; Ong, Daniel; Wijaya, Linda; Laws, Simon; Taddei, Kevin; Newman, Morgan; Lardelli, Michael; Martins, Ralph; Verdile, Giuseppe (2013)We investigated the guinea pig, Cavia porcellus, as a model for Alzheimer’s disease (AD), both in terms of the conservation of genes involved in AD and the regulatory responses of these to a known AD risk factor - high ...
-
Lumsden, A.; Rogers, J.; Majd, S.; Newman, M.; Sutherland, G.; Verdile, Giuseppe; Lardelli, M. (2018)The overwhelming majority of dominant mutations causing early onset familial Alzheimer's disease (EOfAD) occur in only three genes, PSEN1, PSEN2, and APP. An effect-in-common of these mutations is alteration of production ...