Glass-transition behaviour of plasticized starch biopolymer system - A modified Gordon-Taylor approach
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Two plasticizers namely, glycerol and xylitol, based on their similar molecular size (6.3 A) but different molecular weights (Glycerol-92; Xylitol-152) were selected for studying the glass-transition behaviour (rubber like behaviour) in multi-plasticized starch biopolymer with about 70% amylopectin structure. In the calorimetry measurements, glass-transition temperatures (onset temperature for bulk viscous flow) of plasticized samples were higher than non-plasticized samples at low water activities, thus showing typical antiplasticization behaviour. However, when plasticizer concentration was increased up to 15% and 20% wt, all plasticized samples showed significant reduction in glass-transition temperature. We used a modified Gordon-Taylor model to understand the competitive plasticization of glycerol and xylitol in presence of water, and suggest that competitive plasticization exists and occurs at a threshold amount of matrix free water content, due to strong three-way interactions: starch-plasticizer, plasticizer-plasticizer/water and starch-water. This competitive interaction is significant in determining the onset temperature for viscous flow behaviour; at higher matrix water content, the Gordon-Taylor constant was relatively unaffected by the plasticizer amount, and water was the dominant plasticizer. A new interaction parameter that separates the starch-plasticizer interaction in a starch-plasticizer-water system is also discussed.
Related items
Showing items related by title, author, creator and subject.
-
Muscat, D.; Adhikari, B.; Adhikari, R.; Chaudhary, Deeptangshu (2012)In this study, the film forming behaviour of low amylose (LA) and high amylose (HA) starches was studied. The starch-alone and a blend of plasticizer (polyol)–starch films were developed by gelatinising at various ...
-
Synergistic interactions of plasticizers and nanoclays in hydrophilic starch based bionanocompositesLiu, HuiHua (2011)Depletion of non-renewable resources and exorbitant levels of carbon dioxide emissions have questioned the further usage of traditional plastics. The imbalance in global sustainability has necessitated the development and ...
-
Liu, Huihua; Chaudhary, Deeptangshu; Ingram, Gordon; John, Joseph (2011)In this article, we demonstrated that within a hydrophilic biopolymer–plasticizer system, the molecular ‘‘activity’’ of the plasticizer also influenced the extent of these interactions. We demonstrated through an analysis ...