Detection of Fast Transients with Radio Interferometric Arrays
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
Next-generation radio arrays, including the Square Kilometre Array (SKA) and its pathfinders, will open up new avenues for exciting transient science at radio wavelengths. Their innovative designs, comprising a large number of small elements, pose several challenges in digital processing and optimal observing strategies. The Giant Metre-wave Radio Telescope (GMRT) presents an excellent test-bed for developing and validating suitable observing modes and strategies for transient experiments with future arrays. Here we describe the first phase of the ongoing development of a transient detection system for GMRT that is planned to eventually function in a commensal mode with other observing programs. It capitalizes on the GMRT's interferometric and sub-array capabilities, and the versatility of a new software backend. We outline considerations in the plan and design of transient exploration programs with interferometric arrays, and describe a pilot survey that was undertaken to aid in the development of algorithms and associated analysis software. This survey was conducted at 325 and 610 MHz, and covered 360 deg2 of the sky with short dwell times. It provides large volumes of real data that can be used to test the efficacies of various algorithms and observing strategies applicable for transient detection. We present examples that illustrate the methodologies of detecting short-duration transients, including the use of sub-arrays for higher resilience to spurious events of terrestrial origin, localization of candidate events via imaging, and the use of a phased array for improved signal detection and confirmation. In addition to demonstrating applications of interferometric arrays for fast transient exploration, our efforts mark important steps in the roadmap toward SKA-era science.
Related items
Showing items related by title, author, creator and subject.
-
Offringa, A.; Wayth, Randall; Hurley-Walker, N.; Kaplan, D.; Barry, N.; Beardsley, A.; Bell, M.; Bernardi, G.; Bowman, J.; Briggs, F.; Callingham, J.; Cappallo, R.; Carroll, P.; Deshpande, A.; Dillon, J.; Dwarakanath, K.; Ewall-Wice, A.; Feng, L.; For, B.; Gaensler, B.; Greenhill, L.; Hancock, P.; Hazelton, B.; Hewitt, J.; Hindson, L.; Jacobs, D.; Johnston-Hollitt, M.; Kapinska, A.; Kim, H.; Kittiwisit, P.; Lenc, E.; Line, J.; Loeb, A.; Lonsdale, C.; McKinley, B.; McWhirter, S.; Mitchell, D.; Morales, M.; Morgan, E.; Morgan, J.; Neben, A.; Oberoi, D.; Ord, Stephen; Paul, S.; Pindor, B.; Pober, J.; Prabu, T.; Procopio, P.; Riding, J.; Shankar, N.; Sethi, S.; Srivani, K.; Staveley-Smith, L.; Subrahmanyan, R.; Sullivan, I.; Tegmark, M.; Thyagarajan, N.; Tingay, Steven; Trott, C.; Webster, R.; Williams, A.; Williams, C.; Wu, C.; Wyithe, J.; Zheng, Q. (2015)The Murchison Widefield Array is a new low-frequency interferometric radio telescope built in Western Australia at one of the locations of the future Square Kilometre Array. We describe the automated radio-frequency ...
-
Bell, M.; Fender, R.; Swinbank, J.; Miller-Jones, James; Law, C.; Scheers, B.; Spreeuw, H.; Wise, M.; Stappers, B.; Wijers, R.; Hessels, J.; Masters, J. (2011)In this paper we present the results of a survey for radio transients using data obtained from the Very Large Array archive. We have reduced, using a pipeline procedure, 5037 observations of the most common pointings - ...
-
Trott, Cathryn; Wayth, Randall; Macquart, Jean-Pierre; Tingay, Steven (2011)Transient radio signals of astrophysical origin present an avenue for studying the dynamic universe. With the next generation of radio interferometers being planned and built, there is great potential for detecting and ...