Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Nuclear reactor materials at the atomic scale

    Access Status
    Open access via publisher
    Authors
    Marquis, E.
    Hyde, J.
    Saxey, David
    Lozano-Perez, S.
    de Castro, V.
    Hudson, D.
    Williams, C.
    Humphry-Baker, S.
    Smith, G.
    Date
    2009
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Marquis, E. and Hyde, J. and Saxey, D. and Lozano-Perez, S. and de Castro, V. and Hudson, D. and Williams, C. et al. 2009. Nuclear reactor materials at the atomic scale. Materials Today. 12 (11): pp. 30-37.
    Source Title
    Materials Today
    DOI
    10.1016/S1369-7021(09)70296-2
    ISSN
    1369-7021
    School
    John de Laeter CoE in Mass Spectrometry
    URI
    http://hdl.handle.net/20.500.11937/32398
    Collection
    • Curtin Research Publications
    Abstract

    With the renewed interest in nuclear energy, developing new materials able to respond to the stringent requirements of the next-generation fission and future fusion reactors has become a priority. An efficient search for such materials requires detailed knowledge of material behaviour under irradiation, high temperatures and corrosive environments. Minimizing the rates of materials degradation will be possible only if the mechanisms by which it occurs are understood. Atomic-scale experimental probing as well as modelling can provide some answers and help predict in-service behaviour. This article illustrates how this approach has already improved our understanding of precipitation under irradiation, corrosion behaviour, and stress corrosion cracking. It is also now beginning to provide guidance for the development of new alloys. © 2009 Elsevier Ltd. All rights reserved.

    Related items

    Showing items related by title, author, creator and subject.

    • Characterisations of base course materials in Western Australia pavements
      Siripun, Komsun (2010)
      Western Australia (WA) has a road network of approximately 177,700 km, including a 17,800 km stage highway system (Main Roads Western Australia 2009). This infrastructure supports a population of only about two million, ...
    • Dynamic Modulus Characteristics of Bound Cement-Treated Crushed Rock Base course
      Nusit, K.; Jitsangiam, Peerapong; Nikraz, Hamid; Hewa Thalagahage, R. (2014)
      Cement-treated base is a conveniently and effectively stabilised pavement material consisting of a mixture of standard base course materials blended with a prescribed amount of Portland cement and water. The cement-treated ...
    • Dynamic Modulus Measurements of Bound Cement-Treated Base Materials
      Nusit, K.; Jitsangiam, Peerapong; Kodikara, J.; Bui, H.; Leung, G.L.M. (2015)
      One of the most common methods used in road-pavement construction is the stabilizing of the conventional pavement base course layer. This is achieved by adding cement or lime to gain better material performance. However, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.