Show simple item record

dc.contributor.authorLiu, Y.
dc.contributor.authorGuo, Y.
dc.contributor.authorRan, R.
dc.contributor.authorShao, Zongping
dc.identifier.citationLiu, Y. and Guo, Y. and Ran, R. and Shao, Z. 2012. A new neodymium-doped BaZr0.8Y0.2O3-δ as potential electrolyte for proton-conducting solid oxide fuel cells. Journal of Membrane Science. 415-416: pp. 391-398.

Chemically stable BaZr0.8Y0.2O3−δ (BZY) oxide is limited to applications as an electrolyte for solid oxide fuel cells (SOFCs) because of its poor sintering behavior. This study attempts to improve the sinterability and conductivity of BZY using the partial substitution of Zr4+ in BZY with Nd3+. An oxide with the nominal composition of BaZr0.7Nd0.1Y0.2O3−δ (BZNY) is specifically investigated. Results from X-ray diffraction (XRD) demonstrate Nd3+ is successfully doped into the lattice as anticipated and transmission electron microscopy (TEM) characterizations verify the morphology and crystal structure of the BZNY powder. Dilatometric measurement and scanning electron microscopy (SEM) observations provide verification that the sinterability of the oxide is effectively improved by introducing Nd3+. XRD and CO2-TPD results demonstrate that BZNY is relatively stable with respect to the CO2 atmosphere. The total conductivity of BZNY in wet H2 is 2.76×10−3 S cm−1 at 600 °C. An anode-supported thin-film BZNY electrolyte (~30 μm) cell is fabricated, and the electrolyte layer is found to be well densified after co-sintering with the anode substrate at 1450 °C for 5 h. The cell delivers a peak power density of 142 mW cm−2 at 700 °C, higher than the reported values for a similar cell with BZY electrolyte.

dc.publisherElsevier B.V
dc.titleA new neodymium-doped BaZr0.8Y0.2O3-δ as potential electrolyte for proton-conducting solid oxide fuel cells
dc.typeJournal Article
dcterms.source.titleJournal of Membrane Science
curtin.accessStatusFulltext not available

Files in this item


This item appears in the following Collection(s)

Show simple item record