A bio-anodic filter facilitated entrapment, decomposition and in situ oxidation of algal biomass in wastewater effluent
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
This study examined for the first time the use of bioelectrochemical systems (BES) to entrap, decompose and oxidise fresh algal biomass from an algae-laden effluent. The experimental process consisted of a photobioreactor for a continuous production of the algal-laden effluent, and a two-chamber BES equipped with anodic graphite granules and carbon-felt to physically remove and oxidise algal biomass from the influent. Results showed that the BES filter could retain ca. 90% of the suspended solids (SS) loaded. A coulombic efficiency (CE) of 36.6% (based on particulate chemical oxygen demand (PCOD) removed) was achieved, which was consistent with the highest CEs of BES studies (operated in microbial fuel cell mode (MFC)) that included additional pre-treatment steps for algae hydrolysis. Overall, this study suggests that a filter type BES anode can effectively entrap, decompose and in situ oxidise algae without the need for a separate pre-treatment step.
Related items
Showing items related by title, author, creator and subject.
-
The distribution pattern of algal flora in saline lakes in Kambalda and Esperance, Western AustraliaHandley, Michelle Anne (2003)The study has attempted to characterise the physicochemical limnology and distribution of algal flora of two salt lake systems in Western Australia, one from the coastal Esperance region and the other from the inland ...
-
Saunders, Ben; Harvey, Euan; Kendrick, G. (2013)Many pomacentrid fishes spawn demersally, often onto nest sites of filamentous algae. The temperate Western Australian pomacentrid P. mccullochi spawns onto such nest sites. During preliminary observations nest sites with ...
-
Saunders, Ben; Kendrick, G.; Harvey, Euan (2015)Areas of high habitat heterogeneity support a high diversity of fauna in both terrestrial and aquatic systems. In altering the rate of consumption of benthic communities, tropical damselfish affect the rate and trajectory ...