Show simple item record

dc.contributor.authorNohut, S.
dc.contributor.authorLu, Chunsheng
dc.contributor.authorGorjan, L.
dc.date.accessioned2017-01-30T13:31:52Z
dc.date.available2017-01-30T13:31:52Z
dc.date.created2014-08-17T20:00:28Z
dc.date.issued2014
dc.identifier.citationNohut, S. and Lu, C. and Gorjan, L. 2014. Optimal linear regression estimator in the fitting of Weibull strength distribution. Journal of Testing and Evaluation. 42 (6): pp. JTE20130074-1-JTE20130074-13.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/32601
dc.identifier.doi10.1520/JTE20130074
dc.description.abstract

The strength of ceramics is characterized by a wide scatter because of pre-existing cracks that occur during the manufacturing and machining processes. The Weibull distribution is one of the most widely used functions for the characterization of strength data. A linear regression method is generally applied in the estimation of Weibull parameters for its simplicity and low overestimation, in which probability estimators play an important role. In this paper, an optimal probability estimator for different sample sizes is obtained by using alumina strength data. In comparison with other commonly used estimators, the optimal probability estimator shows less bias and higher safety. The performance of the optimal probability estimator is also verified by other experimental strength data. In conclusion, an optimal probability estimator constant of 0.25 is suggested in practical applications.

dc.publisherASTM International
dc.subjectfailure probability
dc.subjectstrength
dc.subjectAlumina
dc.subjectlinear regression
dc.subjectWeibull distribution
dc.titleOptimal linear regression estimator in the fitting of Weibull strength distribution
dc.typeJournal Article
dcterms.source.volume42
dcterms.source.number6
dcterms.source.startPageJTE20130074
dcterms.source.endPage1
dcterms.source.issn0090-3973
dcterms.source.titleJournal of Testing and Evaluation
curtin.departmentDepartment of Mechanical Engineering
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record