Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The transcriptional response of microbial communities in thawing Alaskan permafrost soils

    Access Status
    Open access via publisher
    Authors
    Coolen, Marco
    Orsi, W.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Coolen, M. and Orsi, W. 2015. The transcriptional response of microbial communities in thawing Alaskan permafrost soils. Frontiers in Microbiology. 6: 197.
    Source Title
    Frontiers in Microbiology
    DOI
    10.3389/fmicb.2015.00197
    URI
    http://hdl.handle.net/20.500.11937/32649
    Collection
    • Curtin Research Publications
    Abstract

    Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw.

    Related items

    Showing items related by title, author, creator and subject.

    • Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw
      Coolen, Marco; van de Giessen, J.; Zhu, E.; Wuchter, C. (2011)
      Amplified Arctic warming could thaw 25% of the permafrost area by 2100, exposing vast amounts of currently fixed organic carbon to microbially mediated decomposition and release of greenhouse gasses through soil organic ...
    • Effects of Freezing and Thawing Cycle on Mechanical Properties and Stability of Soft Rock Slope
      Chen, Y.; Wu, P.; Yu, Q.; Xu, Guang (2017)
      To explore the variation laws of mechanical parameters of soft rock and the formed slope stability, an experiment was carried out with collected soft rock material specimens and freezing and thawing cycle was designed. ...
    • Evaluation of bio-cementation by microbially induced calcite precipitation as ground improvement method for various environmental conditions
      Cheng, L.; Shahin, Mohamed (2016)
      Microbially induced calcite precipitation (MICP) is a sustainable biological ground improvement technique that is capable of altering and improving soil mechanical and geotechnical engineering properties. In this paper, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.