A multifactor dimensionality reduction based associative classification for detecting SNP interactions
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISBN
School
Collection
Abstract
Identification and characterization of interactions between genes have been increasingly explored in current Genome-wide association studies (GWAS). Several machine learning and data mining approaches have been proposed to identify the multi-locus interactions in higher order genomic data. However, detecting these interactions is challenging due to bio-molecular complexities and computational limitations. In this paper, a multifactor dimensionality reduction based associative classifier is proposed for detecting SNP interactions in genetic epidemiological studies. The approach is evaluated for one to six loci models by varying heritability, minor allele frequency, case-control ratios and sample size. The experimental results demonstrated significant improvements in accuracy for detecting interacting single nucleotide polymorphisms (SNPs) responsible for complex diseases when compared to the previous approaches. Further, the approach was successfully evaluated by using sporadic breast cancer data. The results show interactions among five polymorphisms in three different estrogen-metabolism genes.
Related items
Showing items related by title, author, creator and subject.
-
Berwick, Lyndon (2009)The analytical capacity of MSSV pyrolysis has been used to extend the structural characterisation of aquatic natural organic matter (NOM). NOM can contribute to various potable water issues and is present in high ...
-
Allpike, Bradley (2008)Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
-
Uppu, S.; Krishna, Aneesh; Gopalan, Raj (2014)There have been many studies that depict genotype phenotype relationships by identifying genetic variants associated with a specific disease. Researchers focus more attention on interactions between SNPs that are strongly ...